Category Archives: Molecular Biology

The flying Wallendas of the synapse

Is anything similar to the flying Wallendas ( https://en.wikipedia.org/wiki/The_Flying_Wallendas) going on in the synapse? The first electron micrographs of the synaptic cleft back in the day showed a clear space about 400 Angstroms (40 nanoMeters) thick.  Well we now know that there are tons of proteins occupying this space — a copy of a previous post

The bouillabaisse of the synaptic cleft

appears after the **** at the end of this post.  It shows just how many proteins occupy that clear space. Could a presynaptic protein directly bond to a postsynaptic protein across the cleft (perhaps with the help of a third or fourth Wallenda protein between the two?  A nice review [ Neuron vol. 96 pp. 680 – 696 ’17b ] http://www.cell.com/neuron/fulltext/S0896-6273(17)30935-2 sets out what is known.

We know that neurexins (presynaptic) bind to neuroligins (postsynaptic) across the cleft.  This is the best studied pair, and most of the earlier post discusses what is known about them.

Figure 1c p. 682 is particularly fascinating as it shows that there are many more molecules which shake hands across the cleft.  Even more interesting is the fact that just where they are relative to the center/periphery of  the synapses isn’t shown for the neurexin/neuroligin pair and the LAR/Strk pair (e.g. one of the best studied pairs) because apparently this isn’t known.   The ephrins/ephrin pair and the syncam pair are in the center, while N-cadherin is shown at the edge.

One of the crucial elements of the post-synaptic membrane, the AMPAR receptor for glutamic protrudes its amino terminal domain 1/3 of the way across the cleft (assuming it is 40 nanoMeters thick).

Postsynaptic receptors are said to be clustered in nanoDomains 80 – 100 nanoMeters in diameter, Similarly, presynaptic RIM nanoClusters are the same size and are said to be aligned with postSynaptic nanoClusters of PSD95 as measured by 3D-STORM, the current most cutting edge technique we have for visualizing these things [ Nature vol. 536 pp. 210 – 214 ’17 ].

So, all in all, the paper is fascinating and shows how much more there is to know.

Unfortunately the paper contains one statement which raises my chemical hackles;  “A consistent prediction across models is that the glutamate concentration profile reaches a very high peak (over 1 milliMolar), but only for a brief time period (100 milliSeconds) and over a small distance (100 nanoMeters).” Glutamate is the major excitatory neurotransmitter in brain and is what binds to AMPAR.

Models are lovely, but how many molecules of glutamic acid are they talking about?  It’s easy (but tedious) to figure this out.

We know the volume they are talking about: a cylinder 100 nanoMeters in diameter and 40 nanoMeters tall (the width of the synaptic cleft).   So it contains pi * 100 * 40 = 12,566 cubic nanometers –round this down to 10^4 cubic nanoMeters. A liter is a cube .1 meters (10 centimeters) on a side. So 10 centimeters is 10^8 nanoMeters, meaning that a liter contains (10^8)^3 = 10^24 cubic nanoMeters.

A 1 molar solution of anything contains 6 * 10^23 molecules per liter (Avogadro’s number), so a 1 milliMolar solution (of glutamate in this case) contains 6 * 10^20 molecules/liter or  6 * 10^-4 molecules per cubic nanoMeter. Multiply this by the volume of the cylinder and you get a grand total of 6 molecules of glutamic acid in the cylinder.

If I’ve done the calculations correctly (and I think I have), “a very high peak (over 1 milliMolar)” is basically scientific garbage, the concept of concentration being stretched far beyond its range of meaningful applicability.

I’d love to stand corrected if my calculations are incorrect. Just make a comment.

 

*****

The bouillabaisse of the synaptic cleft

The synaptic cleft is so small ( under 400 Angstroms — 40 nanoMeters ) that it can’t be seen with the light microscope ( the smallest wavelength of visible light 3,900 Angstroms — 390 nanoMeters).  This led to a bruising battle between Cajal and Golgi a just over a century ago over whether the brain was actually made of cells.  Even though Golgi’s work led to the delineation of single neurons he thought the brain was a continuous network.  They both won the Nobel in 1906.

Semifast forward to the mid 60s when I was in medical school.  We finally had the electron microscope, so we could see synapses. They showed up as a small CLEAR spaces (e.g. electrons passed through it easily leaving it white) between neurons.  Neurotransmitters were being discovered at the same time and the synapse was to be the analogy to vacuum tubes, which could pass electricity in just one direction (yes, the transistor although invented hadn’t been used to make anything resembling a computer — the Intel 4004 wasn’t until the 70s).  Of course now we know that information flows back and forth across the synapse, with endocannabinoids (e. g. natural marihuana) being the major retrograde neurotransmitter.

Since there didn’t seem to be anything in the synaptic cleft, neurotransmitters were thought to freely diffuse across it to being to receptors on the other (postsynaptic) side e.g. a free fly zone.

Fast forward to the present to a marvelous (and grueling to read because of the complexity of the subject not the way it’s written) review of just what is in the synaptic cleft [ Cell vol. 171 pp. 745 – 769 ’17 ] http://www.cell.com/cell/fulltext/S0092-8674(17)31246-1 (It is likely behind a paywall).  There are over 120 references, and rather than being just a catalogue, the single author Thomas Sudhof extensively discusseswhich experimental work is to be believed (not that Sudhof  is saying the work is fraudulent, but that it can’t be used to extrapolate to the living human brain).  The review is a staggering piece of work for one individual.

The stuff in the synaptic cleft is so diverse, and so intimately involved with itself and the membranes on either side what what is needed for comprehension is not a chemist but a sociologist.  Probably most of the molecules to be discussed are present in such small numbers that the law of mass action doesn’t apply, nor do binding constants which rely on large numbers of ligands and receptors. Not only that, but the binding constants haven’t been been determined for many of the players.

Now for some anatomic detail and numbers.  It is remarkably hard to find just how far laterally the synaptic cleft extends.  Molecular Biology of the Cell ed. 5 p. 1149 has a fairly typical picture with a size marker and it looks to be about 2 microns (20,000 Angstroms, 2,000 nanoMeters) — that’s 314,159,265 square Angstroms (3.14 square microns).  So let’s assume each protein takes up a square 50 Angstroms on a side (2,500 square Angstroms).  That’s room for 125,600 proteins on each side assuming extremely dense packing.  However the density of acetyl choline receptors at the neuromuscular junction is 8,700/square micron, a packing also thought to be extremely dense which would give only 26,100 such proteins in a similarly distributed CNS synapse. So the numbers are at least in the right ball park (meaning they’re within an order of magnitude e.g. within a power of 10) of being correct.

What’s the point?

When you see how many different proteins and different varieties of the same protein reside in the cleft, the numbers for  each individual element is likely to be small, meaning that you can’t use statistical mechanics but must use sociology instead.

The review focuses on the neurExins (I capitalize the E  to help me remember that they are prEsynaptic).  Why?  Because they are the best studied of all the players.  What a piece of work they are.  Humans have 3 genes for them. One of the 3 contains 1,477 amino acids, spread over 1,112,187 basepairs (1.1 megaBases) along with 74 exons.  This means that just over 1/10 of a percent of the gene is actually coding for for the amino acids making it up.  I think it takes energy for RNA polymerase II to stitch the ribonucleotides into the 1.1 megabase pre-mRNA, but I couldn’t (quickly) find out how much per ribonucleotide.  It seems quite wasteful of energy, unless there is some other function to the process which we haven’t figured out yet.

Most of the molecule resides in the synaptic cleft.  There are 6 LNS domains with 3 interspersed EGFlike repeats, a cysteine loop domain, a transmembrane region and a cytoplasmic sequence of 55 amino acids. There are 6 sites for alternative splicing, and because there are two promoters for each of the 3 genes, there is a shorter form (beta neurexin) with less extracellular stuff than the long form (alpha-neurexin).  When all is said and done there are over 1,000 possible variants of the 3 genes.

Unlike olfactory neurons which only express one or two of the nearly 1,000 olfactory receptors, neurons express mutiple isoforms of each, increasing the complexity.

The LNS regions of the neurexins are like immunoglobulins and fill at 60 x 60 x 60 Angstrom box.  Since the synaptic cleft is at most 400 Angstroms long, the alpha -neurexins (if extended) reach all the way across.

Here the neurexins bind to the neuroligins which are always postsynaptic — sorry no mnemonic.  They are simpler in structure, but they are the product of 4 genes, and only about 40 isoforms (due to alternative splicing) are possible. Neuroligns 1, 3 and 4 are found at excitatory synapses, neuroligin 2 is found at inhibitory synapses.  The intracleft part of the neuroligins resembles an important enzyme (acetylcholinesterase) but which is catalytically inactive.  This is where the neurexins.

This is complex enough, but Sudhof notes that the neurexins are hubs interacting with multiple classes of post-synaptic molecules, in addition to the neuroligins — dystroglycan, GABA[A] receptors, calsystenins, latrophilins (of which there are 4).   There are at least 50 post-synaptic cell adhesion molecules — “Few are well understood, although many are described.”

The neurexins have 3 major sites where other things bind, and all sites may be occupied at once.  Just to give you a taste of he complexity involved (before I go on to  larger issues).

The second LNS domain (LNS2)is found only in the alpha-neurexins, and binds to neuroexophilin (of which there are 4) and dystroglycan .

The 6th LNS domain (LNS6) binds to neuroligins, LRRTMs, GABA[A] receptors, cerebellins and latrophilins (of which there are 4)_

The juxtamembrane sequence of the neurexins binds to CA10, CA11 and C1ql.

The cerebellins (of which there are 4) bind to all the neurexins (of a particular splice variety) and interestingly to some postsynaptic glutamic acid receptors.  So there is a direct chain across the synapse from neurexin to cerebellin to ion channel (GLuD1, GLuD2).

There is far more to the review. But here is something I didn’t see there.  People have talked about proton wires — sites on proteins that allow protons to jump from one site to another, and move much faster than they would if they had to bump into everything in solution.  Remember that molecules are moving quite rapidly — water is moving at 590 meters a second at room temperature. Since the synaptic cleft is 40 nanoMeters (40 x 10^-9 meters, it should take only 40 * 10^-9 meters/ 590 meters/second   60 trillionths of a second (60 picoSeconds) to cross, assuming the synapse is a free fly zone — but it isn’t as the review exhaustively shows.

It it possible that the various neurotransmitters at the synapse (glutamic acid, gamma amino butyric acid, etc) bind to the various proteins crossing the cleft to get their target in the postsynaptic membrane (e.g. neurotransmitter wires).  I didn’t see any mention of neurotransmitter binding to  the various proteins in the review.  This may actually be an original idea.

I’d like to put more numbers on many of these things, but they are devilishly hard to find.  Both the neuroligins and neurexins are said to have stalks pushing them out from the membrane, but I can’t find how many amino acids they contain.  It can’t find how much energy it takes to copy the 1.1 megabase neurexin gene in to mRNA (or even how much energy it takes to add one ribonucleotide to an existing mRNA chain).

Another point– proteins have a finite lifetime.  How are they replenished?  We know that there is some synaptic protein synthesis — does the cell body send packages of mRNAs to the synapse to be translated there.  There are at least 50 different proteins mentioned in the review, and don’t forget the thousands of possible isoforms, each of which requires a separate mRNA.

Old Chinese saying — the mountains are high and the emperor is far away. Protein synthesis at the synaptic cleft is probably local.  How what gets made and when is an entirely different problem.

A large part of the review concerns mutations in all these proteins associated with neurologic disease (particularly autism).  This whole area has a long and checkered history.  A high degree of cynicism is needed before believing that any of these mutations are causative.  As a neurologist dealing with epilepsy I saw the whole idea of ion channel mutations causing epilepsy crash and burn — here’s a link — https://luysii.wordpress.com/2011/07/17/we’ve-found-the-mutation-causing-your-disease-not-so-fast-says-this-paper/

Once again, hats off to Dr. Sudhof for what must have been a tremendous amount of work

Advertisements

Been busy

I haven’t posted for a while because I’ve been writing a letter to PNAS concerning my idea that chronic fatigue syndrome symptoms are a manifestation of an excess of senescent cells pumping out all sorts of inflammatory proteins into the systemic circulation.  The way to prove or disprove the idea is to measure p15^INK4a in circulating white cells.  The letter is now written and my wife is attempting to put it into English.  For details about the idea please see https://luysii.wordpress.com/2017/09/04/is-the-era-of-precision-medicine-for-chronic-fatigue-syndrome-at-hand/.  Wish me luck that the letter is accepted.

Why drug discovery is hard #29 — a very old player doing a very new thing

We all know what RNA does don’t we?  It binds to other RNAs and to DNA.  Sure lots of new forms of RNA have been found: microRNAs, competitive endogenous RNA (ceRNA), long nonCoding (for protein) RNA (lncRNA), piwiRNAs, small interfering RNAs (siRNAs), . .. The list appears endless.  But the basic mechanism of action of RNA in the cell is binding to some other polynucleotide (RNA or DNA) and affecting its function.

Not so fast.  A new paper http://science.sciencemag.org/content/358/6366/1051 describes  lncRNA-ACOD1, a cellular RNA induced by a variety of viruses.  lncRNA-ACOD1 binds to an enzyme enhancing its catalytic efficiency.  Now that’s new.  Certainly RNAs and proteins bind to each other in the ribosome, and in RNAase P, but here the proteins serve to structure the RNA so it can carry out its catalytic function, not the other way around.

The enzyme bound is called GOT2 (Glutamic Oxaloacetic Transaminase 2).  Much interesting cellular biochemistry is discussed in the paper which I’ll skip, except to say that the virus uses the hyped up GOT2 to repurpose the cell’s metabolic machinery for its own evil ends.

lncRNA-ACOD1 has 3 exons and a polyAdenine tail.  There are two transcript variants containing  2,330 and 2,259 nucleotides.  There are only 100 copies/cell.  lncRNA-ACOD1 nucleotides #165 – #390 bind to amino acids #54 – #68 of GOT2.

So what are the other 2000 or so nucleotides of lncRNA-ACOD1 doing?   The phenomenon of RNA binding to protein is quite likely to be more widespread.  Both the GOT2 interacting motif and the interacting sequence of lncRNA-ACOD1 are well conserved across species of hosts and viruses.

Although viruses co-opt lncRNA-ACOD1, it is normally expressed in the heart as is GOT2 with no viral infection at all.  So we have likely stumbled onto an entirely new method of cellular metabolic control, AND a whole new set of players and interactions for drugs to act on (if they aren’t already doing this unknown to us).

This is series member #29 of why drug development is hard, most of which concentrated on the fact that we don’t know all the players.  lncRNA-ACOD1 is different — RNA is a player we’ve known for a very long time  but it appears to be playing a game entirely new to us.

It is also good to see cutting edge research like this coming out of China.  Hopefully it will stand up, but enough questionable stuff has come from them that every Chinese paper is under a cloud.

This is why I love reading the current literature.  You never know what you’re going to find.  It’s like opening presents.

A few Thanksgiving thank you’s

As CEO of a very large organization, it’s time to thank those unsung divisions that make it all possible.  Fellow CEOs should take note and act appropriately regardless of the year it’s been for them.

First: thanks to the guys in shipping and receiving.  Kinesin moves the stuff out and Dynein brings it back home.  Think of how far they have to go.  The head office sits in area 4 of the cerebral cortex and K & D have to travel about 3 feet down to the motorneurons in the first sacral segment of the spinal cord controlling the gastrocnemius and soleus, so the boss can press the pedal on his piano when he wants. Like all good truckers, they travel on the highway.  But instead of rolling they jump.  The highway is pretty lumpy being made of 13 rows of tubulin dimers.

Now chemists are very detail oriented and think in terms of Angstroms (10^-10 meters) about the size of a hydrogen atom. As CEO and typical of cell biologists, I have to think in terms of the big picture, so I think in terms of nanoMeters (10^-9 meters).  Each tubulin dimer is 80 nanoMeters long, and K & D essentially jump from one to the other in 80 nanoMeter steps.  Now the boss is shrinking as he gets older, but my brothers working for players in the NBA have to go more than a meter to contract the gastrocnemius and soleus (among other muscles) to help their bosses jump.  So split the distance and call the distance they have to go one Meter.  How many jumps do Kinesin and Dynein have to make to get there? Just 10^9/80 — call it 10,000,000. The boys also have to jump from one microtubule to another, as the longest microtubule in our division is at most 100 microns (.1 milliMeter).  So even in the best of cases they have to make at least 10,000 transfers between microtubules.  It’s a miracle they get the job done at all.

To put this in perspective, consider a tractor trailer (not a truck — the part with the motor is the tractor, and the part pulled is the trailer — the distinction can be important, just like the difference between rifle and gun as anyone who’s been through basic training knows quite well).  Say the trailer is 48 feet long, and let that be comparable to the 80 nanoMeters K and D have to jump. That’s 10,000,000 jumps of 48 feet or 90,909 miles.  It’s amazing they get the job done.

Second: Thanks to probably the smallest member of the team.  The electron.  Its brain has to be tiny, yet it has mastered quantum mechanics because it knows how to tunnel through a potential barrier.   In order to produce the fuel for K and D it has to tunnel some 20 Angstroms from the di-copper center (CuA) to heme a in cytochrome C oxidase (COX).  Is the electron conscious? Who knows?  I don’t tell it what to do.   Now COX is just a part of one of our larger divisions, the power plant (the mitochondrion).

Third: The power plant.  Amazing to think that it was once (a billion years or more ago) a free living bacterium.  Somehow back in the mists of time one of our predecessors captured it.  The power plant produces gas (ATP) for the motors to work.  It’s really rather remarkable when you think of it.   Instead of carrying a tank of ATP, kinesin and dynein literally swim in the stuff, picking it up from the surroundings as they move down the microtubule.  Amazingly the entire division doesn’t burn up, but just uses the ATP when and where needed.  No spontaneous combustion.

There are some other unsung divisions to talk about (I haven’t forgotten you ladies in the steno pool, and your incredible accuracy — 1 mistake per 100,000,000 letters [ Science vol. 328 pp. 636 – 639 ’10 ]).  But that’s for next time.

To think that our organization arose by chance, working by finding a slightly better solution to problems it face boggles this CEO’s mind (but that’s the current faith — so good to see such faith in an increasingly secular world).

Abeta raises its head again

Billions have been spent (and lost) by big Pharma on attempts to decrease Abeta peptide in the brain as a therapy for Alzheimer’s. Yet the theory that Abeta has something to do with Alzheimer’s won’t die because it is so compelling.

Here’s another example [Neuron vol. 96 pp. 355 – 372 ’17 ] Neurons in hippocampal slices stop forming new synapses when exposed to Abeta.  We think that synapse formation and elimination is going on all the time in our brains — it certainly is in mice.  For details see an excellent review [ Neuron vol. 96 pp. 43 – 55 ’17 ].  This is thought to be important in learning, something lost in Alzheimer’s as well as old memories. Two Alzheimer mouse models have shown defects in new synaptic spine formation.

Even better the authors found what Abeta is binding to — a well known brain protein — Nogo receptor 1 (Ngr1).  When it was knocked down in the slice (by bolistic short hairpin RNA infererence — shRNAi), spines started reforming.

So the work may explain some of the problems in Alzheimer’s disease but it says nothing about the neuronal loss which is also found.

Also, there is something fishy about the results.  The Abeta preparation used in the experiment was mostly oligomers of about 100 monomers (with a molecular mass of 500 kiloDaltons).  Monomers had no effect.  It is much easier to conceptualize a monomer binding to a receptor than an oligomer.  However, oligomer binding would tend to cluster receptors, something important in immune responses.

The strongest evidence for Abeta in my opinion is the fact that certain mutations PROTECT against Alzheimer’s — and given the structure just worked out we have a plausible explanation of just how this works — for details see — https://luysii.wordpress.com/2017/10/12/abeta42-at-last/

 

Forgotten but not gone

Life is said to have originated in the RNA world.  We all know about the big 3 important RNAs for the cell, mRNA, ribosomal RNA and transfer RNA.  But just like the water, sewer, power and subway systems under Manhattan, there is another world down there in the cell which doesn’t much get talked about.  These are RNAs, whose primary (and possibly only) function is to interact with other RNAs.

Start with microRNAs (of which we have at least 1,500 as of 12/12).  Their function is to bind to messenger RNA (mRNA) and inhibit translation of the mRNA into protein.  The effects aren’t huge, but they are a more subtle control of protein expression, than the degree of transcription of the gene.

Then there are ceRNAs (competitive endogenous RNAs) which have a large number of binding sites for microRNAs — humans have a variety of them all with horrible acronyms — HULC, PTCSC3 etc. etc. They act as sponges for microRNAs keeping them bound and quiet.

Then there are circular RNAs.  They’d been missed until recently, because typical RNA sequencing methods isolate only RNAs with characteristic tails, and a circular RNA doesn’t have any.  One such is called CiRS7/CDR1) which contain 70 binding sites for one particular microRNA (miR-7).  They are unlike to be trivial.  They are derived from 15% of actively transcribed genes.  They ‘can be’ 10 times as numerous as linear RNAs (like mRNA and everything else) — probably because they are hard to degrade < Science vol. 340 pp. 440 – 441 ’17 >. So some of them are certainly RNA sponges — but all of them?

The latest, and most interesting class are the nonCoding RNAs found in viruses. Some of them function to attack cellular microRNAs and help the virus survive. Herpesvirus saimiri a gamma-herpes virus establishes latency in the T lymphocytes of New World primates, by expressing 7 small nuclear uracil-rich nonCoding RNAs (called HSURs).  They associate with some microRNAs, and rather than blocking their function act as chaperones < Nature vol. 550 pp. 275 – 279 ’17 >.  They HSURs also bind to some mRNAs inhibiting their function — they do this by helping miR-16 bind to their targets — so they are chaperones.  So viral Sm-class RNAs may function as microRNA adaptors.

Do you think for one minute, that the cell isn’t doing something like this.

I have a tendency to think of RNAs as always binding to other RNAs by classic Watson Crick base pairing — this is wrong as a look at any transfer RNA structure will show. https://en.wikipedia.org/wiki/Transfer_RNA.  Far more complicated structures may be involved, but we’ve barely started to look.

Then there are the pseudogenes, which may also have a function, which is to be transcribed and sop up microRNAs and other things — I’ve already written about this — https://luysii.wordpress.com/2010/07/14/junk-dna-that-isnt-and-why-chemistry-isnt-enough/.  Breast cancer cells think one (PTEN1) is important enough to stop it from being transcribed, even though it can’t be translated into protein.

Does she or doesn’t she? Only her geneticist knows for sure

Back in the day there was a famous ad for Claroil — Does she or doesn’t she? Only her hairdresser knows for sure.  Now it’s the geneticist who can sequence genes for Two Pore Channels in pigment forming cells (melanocytes) who really knows.

Except for redheads, skin and hair color is determined by how much eumelanin you have.  All human melanins are  polymers of oxidation products of tyrosine (DOPA, DOPAquinone) and indole 5,6 quinone, so its chemical structure isn’t certain.  It is made inside a specialized organelle of the melanocyte called (logically enough) the melanosome.

There is all sorts of interesting chemistry and physiology involved.  In particular a melanosome protein called Pmel17 adopts an amyloid-like structure (so not all amyloid is bad !) for the construction of melanin.  The crucial enzyme oxidizing tyrosine is tyrosinase, and its activity strongly depends on pH, being most active at pH 7 (neutral pH).

In the melanosome membrane is found TPC2, which helps control ion flow in and out of the melanosome.  Two mutations Methionine #484 –> Leucine (or M484L) and Glycine #734 –> Glutamic acid (G734E) are associated with a shift from brown to blond.  You have blond hair if your melanosomes make less melanin.  Both mutations result in an increase in TPC2 activity resulting in lower pH, lower tyrosinase activity and less melanin in the melanosome — voila — a blond.

So it doesn’t take a big (one amino acid in over 734) change in the huge TCP2 protein for the shift to occur.

Who knew Marshall McLuhan was a molecular biologist

Marshall McLuhan famously said “the medium is the message”. Who knew he was talking about molecular biology?  But he was, if you think of the process of transcription of DNA into various forms of RNA as the medium and the products of transcription as the message.  That’s exactly what this paper [ Cell vol. 171 pp. 103 – 119 ’17 ] says.

T cells are a type of immune cell formed in the thymus.  One of the important transcription factors which turns on expression of the genes which make a T cell a Tell is called Bcl11b.  Early in T cell development it is sequestered away near the nuclear membrane in highly compacted DNA. Remember that you must compress your 1 meter of DNA down by 100,000fold to have it fit in the nucleus which is 1/100,000th of a meter (10 microns).

What turns it on?  Transcription of nonCoding (for protein) RNA calledThymoD.  From my reading of the paper, ThymoD doesn’t do anything, but just the act of opening up compacted DNA near the nuclear membrane produced by transcribing ThymoD is enough to cause this part of the genome to move into the center of the nucleus where the gene for Bcl11b can be transcribed into RNA.

There’s a lot more to the paper,  but that’s the message if you will.  It’s the act of transcription rather than what is being transcribed which is important.

The paper doesn’t talk about the structure of ThymoD — how long it is, whether it binds to anything in the nucleus — etc. etc.  Perhaps I’ve missed it.  I’ve written the lead author. Hopefully I won’t be too embarrassed by what he responds.

Here’s more about McLuhan — https://en.wikipedia.org/wiki/Marshall_McLuhan

If some of the terms used here are unfamiliar — look at the following post and follow the links as far as you need to.  https://luysii.wordpress.com/2010/07/07/molecular-biology-survival-guide-for-chemists-i-dna-and-protein-coding-gene-structure/

 

How fast is your biological clock ticking — latest results

Our family breeds like sequoias.  Medicine has improved, but biology hasn’t changed, and problems with fertility and miscarriages have emerged in the generation behind me.   A cousin had a child at 46 who is now in grad school.  My brother had a child at 48, also doing OK. One son, who is north of 50 has an infant and a 3 year old.  That’s why the following paper from Iceland is so relevant.  I’ve posted on this subject before, but the new paper has 10 times the data of the old [ Nature vol. 549 pp. 519 – 522 ’17 ].

The paper is from Iceland, and whether the data can be extrapolated to other populations isn’t clear — but the biology in question is so basic that I think it can. Some 1,548 mother father child trios had their entire genomes (to 35 fold coverage).  In addition, 225 of the children had reproduced, providing a few 2 generation families.  If any position in the 3,200,000,000 bases of the genome differs from that of the mother and the father, than a mutation has taken place.  It isn’t clear how old the children were when sequenced, so possibly some of the mutations arose since birth.

Some 108,778 de novo mutations were found in over 1548 + 225 (at least) individuals — so each individual carried an average of 61 de novo mutations.  When the number of mutations were plotted against the ages of both parents, it was found that each year a father waited to reproduce added 1.51 mutations.  Previous work (with much less data) stated that the age of the mother didn’t matter.  No so, although the mutational burden of an additional year before reproduction in a woman increased the mutations 4 times less (.37 extra mutations/year of maternal life).

The previous paper reported on was somewhat suspect, because the 78 parent child trios had a child with autism.  Not so in this population study.

The numbers were large enough, that the type of mutation could be studied.  Mothers and fathers had different types of mutations in different frequencies.   They found one 20 megaBase region on chromosome #8 with a mutation rate of cytosine to guanosine (C to G) 50 times higher than the rest of the genome.

People use ‘molecular clocks’ to time evolution of species, based on the assumption that the mutation rate is constant.  But it isn’t with age, and a shift in the average age for reproduction could seriously screw up the molecular clock predictions.

An average of 61 de novo mutations per individual sounds pretty horrible, but it isn’t when you consider that 3,200,000,000 – 61 positions were copied faithfully (an error rate of 1 in 50 million).

 

The worst name for a drug I’ve ever heard of

It is simply impossible for me to think of a worse name for a drug which might help people with Down syndrome than ALGERNON.   The authors can be excused as they’re all from Japan, but the editor of the paper Fred Gage should have known about ‘Flowers for Algernon’– https://en.wikipedia.org/wiki/Flowers_for_Algernon.  Briefly, it’s a story about a drug which tripled the intelligence of Algernon a laboratory mouse which was then given to a retarded individual (Charlie Gordon) whose intelligence similarly tripled, only to decline like Algernon’s.  It was originally a short story, then a book, then a play etc. etc.

The drug is potentially quite exciting — ALGERNON is an acronym forALtered GenERatioN Of Neurons).  It increases the number of neurons form by mice with a model of trisomy 21.  The brain is bigger, and the animals do better on tests.  It is thought to work by inhibiting an enzyme (DYRK1A) which adds phosphate to serine, threonine and tyrosine, making it a dual specificity kinase.  It phosphorylates a variety of proteins known to have significant effects on brain development (tau, cyclin D1, caspase9, Notch, gli1, etc). The net effect of DYRK1A inhibition is to increase neural stem cell proliferation during fetal life.

Chemists will be interested in just how simple the structure of ALGERNON is — it’s an all aromatic compound made of a pyridine linked to a fused 6:5 ring system in which the 5 membered ring contains 2 nitrogens.  That’s it.  No alcohols, methyls, ethyls, ..  amines, amides, ethers etc., etc.

The authors blue-sky a bit at the end.  They note that mice show neural proliferation during adult life (we do as well, but to a much lesser extent).  It might be useful to improve function in living Down syndrome individuals, and just about any other neurological problem in which neural proliferation would be beneficial.  It might also be offered to women carrying a Down fetus who object to abortion on moral grounds.  Exciting stuff, but for god’s sake change the name.