Category Archives: Molecular Biology

Why antioxidants may be bad for you

Antioxidants (vitamin E, beta carotene, vitamin C etc. etc. ) were very big a while ago. They were held to prevent all sorts of bad things (heart attack, stroke). However one pretty good study done years and years ago (see the bottom) showed that they increased the risk of lung cancer in 29,000 Finnish male smokers by 18%. People still take them however.

Now we are beginning to find out the good things that oxidation does for you. One oxidation product is 8-oxo-guanine–https://en.wikipedia.org/wiki/8-Oxoguanine — and it is estimated that it occurs 100,000 time a day in every cell in our body. This isn’t very often as we have .24 x 3,200,000 = 768,000,000 guanines in our genome.

One good thing 8-oxo-guanine may do for you is turn on gene transcription [ Proc. Natl. Acad. Sci. vol. 114 pp. 2788 – 2790, 2604 – 2609 ’17 ].This occurs when the guanine occurs in an elegant DNA structure called a G-quartet (G quadruplex) — https://en.wikipedia.org/wiki/G-quadruplex. Oxidation recruits an enzyme to remove it (8-oxo-guanine glycosylase — aka OGG1 ) generating a DNA lesion — a sugar in the backbone without a nucleotide attach. This causes the binding of Apurinic/Apyrmidic Endonuclease 1 (APE1) which recruits other things to repair the DNA.

As you know DNA in our cells is compacted 100,000 fold to fit its 1 meter length into a nucleus .00001 meters in size. Compaction involves wrapping the helix around all nucleosomes and then binding the nucleosomes together.

It’s pretty hard for RNA polymerase to even get to a gene to transcribe it into mRNA, and DNA lesions cause opening up of this compaction so repair enzymes can actually get to the double helix.

One such gene is Vascular Endothelial Growth Factor (VEGF), a gene induced by low oxygen (hypoxia). The promoter of VEGF has a potential G quadruplex sequence. If the authors put 8-oxo-guanine at 5 different positions in the G quartet, transcription of the VEGF gene was increased 2 – 3 times over the next few days. Showing the importance of the DNA lesion, if OGG1 levels were decreased this didn’t happen — showing that guanine oxidation and with the subsequent formation of a DNA lesion is required for increased transcription of VEGF.

Aside from being another mechanism for gene activation under oxidative stress, 8-oxo-guanine may actually be another epigenetic DNA modification, like 5 methyl cytosine.

So this may explain the result immediately below.

[ New England J. Med. vol. 330 pp. 1029 – 1035 ’94 ] The Alpha-Tocopherol, Beta-Carotene Trial (ATBC trial) randomized double blind placebo controlled of daily supplementation with alpha-tocopherol (a form of vitamin E), beta carotene or both to see if it reduced the incidence of lung cancer was done in 29,000 Finnish male smokers ages 50 – 69 (when most of the damage had been done). They received either alpha tocopherol 50 mg/day, beta carotene 20 mg/day or both. There was a high incidence of lung cancer (876/29000) during the 5 – 8 year period of followup. Alpha tocopherol didn’t decrease the incidence of lung cancer, and there was a higher incidence among the men receiving beta carotene (by 18%). Alpha tocopherol had no benefit on mortality (although there were more deaths from hemorrhagic stroke among the men receiving the supplement). Total mortality was 8% higher among the participants on beta carotene (more deaths from lung cancer and ischemic heart disease). It is unlikely that the dose was too low, since it was much higher than the estimated intake thought to be protective in the uncontrolled dietaryt studies. The trial organizers were so baffled by the results that they even wondered whether the beta-carotene pills used in the study had become contaminated with some known carcinogen during the manufacturing process. However, tests have ruled out that possibility.

Needless to say investigators in other beta carotene clinical trials (the Women’s Health Study, the Carotene and Retinoid Efficacy Trial) are upset. [ Science vol. 264 pp. 501 – 502 ’94 ] “In our heart of hearts, we don’t believe [ beta carotene is ] toxic” says one researcher. Touching isn’t it. Such faith in a secular age, particularly where other people’s lives are at stake. I love it when ecology, natural vitamins and pseudoscience take it in the ear.

Back to the drawing board on knockouts and knockdowns

Nothing could be simpler than the distinction between the initial product of genes that code for proteins (mRNA) and genes that don’t (long non-Coding RNAs — aka lncRNA, lincRNA). Not anymore according to an exceedingly clever and well thought out piece of work.

[ Cell vol. 168 pp. 753 – 755, 843 – 855 ’17 ] We know that ultraviolet light damages DNA primarily by forming pyrimidine dimers. Naturally transcription of DNA won’t be as accurate, so the cell has ways to shut it down. Ultraviolet exposure results in an unusual type of restriction of transcription along with slower elongation, with the result that only the promoter proximal 20 – 25 kiloBases of a protein coding gene are efficiently transcribed into mRNA.

In addition, after ultraviolet damage there is a global switch in pre-mRNA processing resulting in a preference for the production of transcripts containing alternative last exons not normally included in the dominant mRNA isoform. Some 84 genes are processed this way.

ASCC3 is the strongest regulator of transcription following UV damage, acting to repress it after UV damage. It is a DEAD/DEAH box DNA helicase component. The ASCC3 protein interacts with RNA polymerase II (Pol II) and becomes highly ubiquitinated and phosphorylated on UV irradiation. It isn’t required to establish transcriptional repression, just maintainance. Disruption of the UV specific form — e.g. the short isoform containing the alternative last exon has the opposite effect, allowing transcriptional recovery after UV damage.

This explains why the human genes remaining expressed (or actually induced) after UV irradiation are invariably ‘very short’ (whatever that means).

The short and long isoforms constitute an autonomous regulatory module, and are related functionally, so the effect of deleting one can at least be partially compensated for by deleting the other.

The 3,100 nucleotide long ‘short’ isoform, codes for a protein, but the protein itself didn’t have the effect of the short form mRNA (see if you can figure out, without reading further how the authors proved this). The mRNA produced from the short isoform is found almost exclusively in the nucleus. The authors put in a stop codon immediately downstream of the start codon which ablated protein production but not transcription into the appropriate mRNA, but there was still rescue of the transcriptional recovery phenotype. So the functional form of the short RNA isoform is mediated by a nonCoding RNA encoded in the ASCC3 protein coding gene. The short ASCC3 isoform has an open reading frame of 333 nucleotides, but functionally it is a lncRNA (of 3.5 kiloBases).

So protein genes can produce functional lncRNAs. How many of them actually do this is unknown. When you knockdown a gene, how much of the effect is due to less protein and how much due to the (putative) lncRNA which also might be produced by the gene. That’s why it’s back to the drawing board for knockout mice (or even mRNA knockdown using shRNA etc. etc.)

The current definition of lncRNA is absence of protein coding potential in a gene.

Why have the same gene code for two different things — there may be a regulatory advantage — controlling the function of the protein. lncRNAs have the unique ability to act in close spatial proximity to their transcription loci.

Stay tuned. It’s just fascinating what we still don’t know.

The humble snow flea teaches us some protein chemistry

Who would have thought that the humble snow flea (that we used to cross country ski over in Montana) would teach us a great deal about protein chemistry turning over some beloved shibboleths in the process.

The flea contains an antifreeze protein, which stops ice crystals from forming inside the cells of the flea in the cold environment in which it lives. The protein contains 81 amino acids, is 45% glycine and contains six  type II polyProline helices each 8 amino acids long (https://en.wikipedia.org/wiki/Polyproline_helix). None of the 6 polyProline helices contain proline despite the name, but all contain from 2 to 6 glycines. Also to be noted is (1) the absence of a hydrophobic core (2) the absence of alpha helices (3) the absence of beta turns (4) the protein has low sequence complexity.

Nonethless it quickly folds into a stable structure — meaning that (1), (2), and (3) are not necessary for a stable protein structure. (4) means that low sequence complexity in a protein sequence does not invariably imply an intrinsically disordered protein.

You can read all about it in Proc. Natl. Acad. Sci. vol. 114 pp. 2241 – 2446 ’17.

Time for some humility in what we thought we knew about proteins, protein folding, protein structural stability.

Memories are made of this ?

Back in the day when information was fed into computers on punch cards, the data was the holes in the paper not the paper itself. A far out (but similar) theory of how memories are stored in the brain just got a lot more support [ Neuron vol. 93 pp. 6 -8, 132 – 146 ’17 ].

The theory says that memories are stored in the proteins and sugar polymers surrounding neurons rather than the neurons themselves. These go by the name of extracellular matrix, and memories are the holes drilled in it which allow synapses to form.

Here’s some stuff I wrote about the idea when I first ran across it two years ago.

——

An article in Science (vol. 343 pp. 670 – 675 ’14) on some fairly obscure neurophysiology at the end throws out (almost as an afterthought) an interesting idea of just how chemically and where memories are stored in the brain. I find the idea plausible and extremely surprising.

You won’t find the background material to understand everything that follows in this blog. Hopefully you already know some of it. The subject is simply too vast, but plug away. Here a few, seriously flawed in my opinion, theories of how and where memory is stored in the brain of the past half century.

#1 Reverberating circuits. The early computers had memories made of something called delay lines (http://en.wikipedia.org/wiki/Delay_line_memory) where the same impulse would constantly ricochet around a circuit. The idea was used to explain memory as neuron #1 exciting neuron #2 which excited neuron . … which excited neuron #n which excited #1 again. Plausible in that the nerve impulse is basically electrical. Very implausible, because you can practically shut the whole brain down using general anesthesia without erasing memory. However, RAM memory in the computers of the 70s used the localized buildup of charge to store bits and bytes. Since charge would leak away from where it was stored, it had to be refreshed constantly –e.g. at least 12 times a second, or it would be lost. Yet another reason data should always be frequently backed up.

#2 CaMKII — more plausible. There’s lots of it in brain (2% of all proteins in an area of the brain called the hippocampus — an area known to be important in memory). It’s an enzyme which can add phosphate groups to other proteins. To first start doing so calcium levels inside the neuron must rise. The enzyme is complicated, being comprised of 12 identical subunits. Interestingly, CaMKII can add phosphates to itself (phosphorylate itself) — 2 or 3 for each of the 12 subunits. Once a few phosphates have been added, the enzyme no longer needs calcium to phosphorylate itself, so it becomes essentially a molecular switch existing in two states. One problem is that there are other enzymes which remove the phosphate, and reset the switch (actually there must be). Also proteins are inevitably broken down and new ones made, so it’s hard to see the switch persisting for a lifetime (or even a day).

#3 Synaptic membrane proteins. This is where electrical nerve impulses begin. Synapses contain lots of different proteins in their membranes. They can be chemically modified to make the neuron more or less likely to fire to a given stimulus. Recent work has shown that their number and composition can be changed by experience. The problem is that after a while the synaptic membrane has begun to resemble Grand Central Station — lots of proteins coming and going, but always a number present. It’s hard (for me) to see how memory can be maintained for long periods with such flux continually occurring.

This brings us to the Science paper. We know that about 80% of the neurons in the brain are excitatory — in that when excitatory neuron #1 talks to neuron #2, neuron #2 is more likely to fire an impulse. 20% of the rest are inhibitory. Obviously both are important. While there are lots of other neurotransmitters and neuromodulators in the brains (with probably even more we don’t know about — who would have put carbon monoxide on the list 20 years ago), the major inhibitory neurotransmitter of our brains is something called GABA. At least in adult brains this is true, but in the developing brain it’s excitatory.

So the authors of the paper worked on why this should be. GABA opens channels in the brain to the chloride ion. When it flows into a neuron, the neuron is less likely to fire (in the adult). This work shows that this effect depends on the negative ions (proteins mostly) inside the cell and outside the cell (the extracellular matrix). It’s the balance of the two sets of ions on either side of the largely impermeable neuronal membrane that determines whether GABA is excitatory or inhibitory (chloride flows in either event), and just how excitatory or inhibitory it is. The response is graded.

For the chemists: the negative ions outside the neurons are sulfated proteoglycans. These are much more stable than the proteins inside the neuron or on its membranes. Even better, it has been shown that the concentration of chloride varies locally throughout the neuron. The big negative ions (e.g. proteins) inside the neuron move about but slowly, and their concentration varies from point to point.

Here’s what the authors say (in passing) “the variance in extracellular sulfated proteoglycans composes a potential locus of analog information storage” — translation — that’s where memories might be hiding. Fascinating stuff. A lot of work needs to be done on how fast the extracellular matrix in the brain turns over, and what are the local variations in the concentration of its components, and whether sulfate is added or removed from them and if so by what and how quickly.

—-

So how does the new work support this idea? It involves a structure that I’ve never talked about — the lysosome (for more info see https://en.wikipedia.org/wiki/Lysosome). It’s basically a bag of at least 40 digestive and synthetic enzymes inside the cell, which chops anything brought to it (e.g. bacteria). Mutations in the enzymes cause all sorts of (fortunately rare) neurologic diseases — mucopolysaccharidoses, lipid storage diseases (Gaucher’s, Farber’s) the list goes on and on.

So I’ve always thought of the structure as a Pandora’s box best kept closed. I always thought of them as confined to the cell body, but they’re also found in dendrites according to this paper. Even more interesting, a rather unphysiologic treatment of neurons in culture (depolarization by high potassium) causes the lysosomes to migrate to the neuronal membrane and release its contents outside. One enzyme released is cathepsin B, a proteolytic enzyme which chops up the TIMP1 outside the cell. So what. TIMP1 is an endogenous inhibitor of Matrix MetalloProteinases (MMPs) which break down the extracellular matrix. So what?

Are neurons ever depolarized by natural events? Just by synaptic transmission, action potentials and spontaneously. So here we have a way that neuronal activity can cause holes in the extracellular matrix,the holes in the punch cards if you will.

Speculation? Of course. But that’s the fun of reading this stuff. As Mark Twain said ” There is something fascinating about science. One gets such wholesale returns of conjecture out of such a trifling investment of fact.”

Tidings of great joy

One of the hardest things I had to do as a doc was watch an infant girl waste away and die of infantile spinal muscular atrophy (Werdnig Hoffmann disease) over the course of a year. Something I never thought would happen (a useful treatment) may be at hand. The actual papers are not available yet, but two placebo controlled trials with a significant number of patients (84, 121) in each were stopped early because trial monitors (not in any way involved with the patients) found the treated group was doing much, much better than the placebo. A news report of the trials is available [ Science vol. 354 pp. 1359 – 1360 ’16 (16 December) ].

The drug, a modified RNA molecule, (details not given) binds to another RNA which codes for the missing protein. In what follows a heavy dose of molecular biology will be administered to the reader. Hang in there, this is incredibly rational therapy based on serious molecular biological knowledge. Although daunting, other therapies of this sort for other neurologic diseases (Huntington’s Chorea, FrontoTemporal Dementia) are currently under study.

If you want to start at ground zero, I’ve written a series https://luysii.wordpress.com/category/molecular-biology-survival-guide/ which should tell you enough to get started. Start here — https://luysii.wordpress.com/2010/07/07/molecular-biology-survival-guide-for-chemists-i-dna-and-protein-coding-gene-structure/
and follow the links to the next two.

Here we go if you don’t want to plow through all three

Our genes occur in pieces. Dystrophin is the protein mutated in the commonest form of muscular dystrophy. The gene for it is 2,220,233 nucleotides long but the dystrophin contains ‘only’ 3685 amino acids, not the 770,000+ amino acids the gene could specify. What happens? The whole gene is transcribed into an RNA of this enormous length, then 78 distinct segments of RNA (called introns) are removed by a gigantic multimegadalton machine called the spliceosome, and the 79 segments actually coding for amino acids (these are the exons) are linked together and the RNA sent on its way.

All this was unknown in the 70s and early 80s when I was running a muscular dystrophy clininc and taking care of these kids. Looking back, it’s miraculous that more of us don’t have muscular dystrophy; there is so much that can go wrong with a gene this size, let along transcribing and correctly splicing it to produce a functional protein.

One final complication — alternate splicing. The spliceosome removes introns and splices the exons together. But sometimes exons are skipped or one of several exons is used at a particular point in a protein. So one gene can make more than one protein. The record holder is something called the Dscam gene in the fruitfly which can make over 38,000 different proteins by alternate splicing.

There is nothing worse than watching an infant waste away and die. That’s what Werdnig Hoffmann disease is like, and I saw one or two cases during my years at the clinic. It is also called infantile spinal muscular atrophy. We all have two genes for the same crucial protein (called unimaginatively SMN). Kids who have the disease have mutations in one of the two genes (called SMN1) Why isn’t the other gene protective? It codes for the same sequence of amino acids (but using different synonymous codons). What goes wrong?

[ Proc. Natl. Acad. Sci. vol. 97 pp. 9618 – 9623 ’00 ] Why is SMN2 (the centromeric copy (e.g. the copy closest to the middle of the chromosome) which is normal in most patients) not protective? It has a single translationally silent nucleotide difference from SMN1 in exon 7 (e.g. the difference doesn’t change amino acid coded for). This disrupts an exonic splicing enhancer and causes exon 7 skipping leading to abundant production of a shorter isoform (SMN2delta7). Thus even though both genes code for the same protein, only SMN1 actually makes the full protein.

More background. The molecular machine which removes the introns is called the spliceosome. It’s huge, containing 5 RNAs (called small nuclear RNAs, aka snRNAs), along with 50 or so proteins with a total molecular mass again of around 2,500,000 kiloDaltons. Think about it chemists. Design 50 proteins and 5 RNAs with probably 200,000+ atoms so they all come together forming a machine to operate on other monster molecules — such as the mRNA for Dystrophin alluded to earlier. Hard for me to believe this arose by chance, but current opinion has it that way.

Splicing out introns is a tricky process which is still being worked on. Mistakes are easy to make, and different tissues will splice the same pre-mRNA in different ways. All this happens in the nucleus before the mRNA is shipped outside where the ribosome can get at it.

The papers [ Science vol. 345 pp. 624 – 625, 688 – 693 ’14 ].describe a small molecule which acts on the spliceosome to increase the inclusion of SMN2 exon 7. It does appear to work in patient cells and mouse models of the disease, even reversing weakness.

I was extremely skeptical when I read the papers two years ago. Why? Because just about every protein we make is spliced (except histones), and any molecule altering the splicing machinery seems almost certain to produce effects on many genes, not just SMN2. If it really works, these guys should get a Nobel.

Well, I shouldn’t have been so skeptical. I can’t say much more about the chemistry of the drug (nusinersen) until the papers come out.

Fortunately, the couple (a cop and a nurse) took the 25% risk of another child with the same thing and produced a healthy infant a few years later.

Will flickering light treat Alzheimer’s disease ?

Big pharma has spent zillions trying to rid the brain of senile plaques, to no avail. A recent paper shows that light flickering at 40 cycles/second (40 Hertz) can do it — this is not a misprint [ Nature vol. 540 pp. 207 – 208, 230 – 235 ’16 ]. As most know the main component of the senile plaque of Alzheimer’s disease is a fragment (called the aBeta peptide) of the amyloid precursor protein (APP).

The most interesting part of the paper showed that just an hour or so of light flickering at 40 Hertz temporarily reduced the amount of Abeta peptide in visual cortex of aged mice. Nothing invasive about that.

Should we try this in people? How harmful could it be? Unfortunately the visual cortex is relatively unaffected in Alzheimer’s disease — the disease starts deep inside the head in the medial temporal lobe, particularly the hippocampus — the link shows just how deep it is -https://en.wikipedia.org/wiki/Hippocampus#/media/File:MRI_Location_Hippocampus_up..png

You might be able to do this through the squamous portion of the temporal bone which is just in front of and above the ear. It’s very thin, and ultrasound probes placed here can ‘see’ blood flowing in arteries in this region. Another way to do it might be a light source placed in the mouth.

The technical aspects of the paper are fascinating and will be described later.

First, what could go wrong?

The work shows that the flickering light activates the scavenger cells of the brain (microglia) and then eat the extracellular plaques. However that may not be a good thing as microglia could attack normal cells. In particular they are important in the remodeling of the dendritic tree (notably dendritic spines) that occurs during experience and learning.

Second, why wouldn’t it work? So much has been spent on trying to remove abeta, that serious doubt exists as to whether excessive extracellular Abeta causes Alzheimer’s and even if it does, would removing it be helpful.

Now for some fascinating detail on the paper (for the cognoscenti)

They used a mouse model of Alzheimer’s disease (the 5XFAD mouse). This poor creature has 3 different mutations associated with Alzheimer’s disease in the amyloid precursor protein (APP) — these are the Swedish (K670B), Florida (I716V) and London (V717I). If that wasn’t enough there are two Alzheimer associated mutations in one of the enzymes that processes the APP into Abeta (M146L, L286V) — using the single letter amino acid code –http://www.biochem.ucl.ac.uk/bsm/dbbrowser/c32/aacode.html.hy1. Then the whole mess is put under control of a promoter particularly active in mice (the Thy1 promoter). This results in high expression of the two mutant proteins.

So the poor mice get lots of senile plaques (particularly in the hippocampus) at an early age.

The first experiment was even more complicated, as a way was found to put channelrhodopsin into a set of hippocampal interneurons (this is optogenetics and hardly simple). Exposing the channel to light causes it to open the membrane to depolarize and the neuron to fire. Then fiberoptics were used to stimulate these neurons at 40 Hertz and the effects on the plaques were noted. Clearly a lot of work and the authors (and grad students) deserve our thanks.

Light at 8 Hertz did nothing to the plaques. I couldn’t find what other stimulation frequencies were used (assuming they were tried).

It would be wonderful if something so simple could help these people.

For other ideas about Alzheimer’s using physics rather than chemistry please see — https://luysii.wordpress.com/2014/11/30/could-alzheimers-disease-be-a-problem-in-physics-rather-than-chemistry/

In a gambling mood? Take II

I increased my holdings of ONTX (Onconova) yesterday on the basis of a trial of their drug Rigosertib jsut reported. Here’s the link — https://finance.yahoo.com/news/onconova-presents-phase-2-data-120100889.html. Basically rigosertib improved survival with no increased toxicity when added to standard therapy for myelodysplastic syndrome.

Big deal you say, that’s a relatively uncommon type of cancer. True but Rigosertib attacks the great white whale of oncology – the ras oncogene. If it works here, it may work in the forms of cancer where ras is mutated (conservatively 20 – 40% of all cancer) This is why buying ONTX is a gamble — you are balancing a 90% – 99% chance that it won’t work, with a 10 – 100 fold payoff. Here’s the old post of last May

Has the great white whale of oncology finally been harpooned?

The ras oncogene is the great white whale of oncology. Mutations in 20 – 40% of cancer turn its activity on so that nothing can turn it off, resulting in cellular proliferation. People have been trying to turn mutated ras off for years with no success.

A current paper [ Cell vol. 165 pp. 643 – 655 ’16 ] describes a new and different way to attack it. Once ras is turned on (either naturally or by mutation) many other proteins must bind to it, to produce their effects — they are called RAS effectors, among which are the uneuphoniously named RAF, RalGDS and PI3K. They bind to activated ras by the cleverly named Ras Binding Domain (RBD) which has 78 amino acids.

The paper describes rigosertib, a not that complicated molecule to the chemist, which inhibits the binding (by resembling the site on ras that the RBD binds to). It is a styryl benzyl sulfone and you can see the structure here — https://en.wikipedia.org/wiki/Rigosertib.

What’s good about it? Well it is in phase III trials for a fairly uncommon form of cancer (myelodysplastic syndrome). That means it isn’t horribly toxic or it wouldn’t have made it out of phase I.

Given the mechanism described, it is possible that Rigosertib will be useful in 20 – 40% of all cancer. Can you say blockbuster drug?

Do you have a speculative bent? Buy the company testing the drug and owning the patent — Oncova Therapeutics. It’s quite cheap — trading at $.40 (yes 40 cents !). It once traded as high as $30.00 — symbol ONTX. I don’t own any (yet), but for the price of a movie with a beer and some wings afterwards you could be the proud owner of 100 shares. If Rigosertib works, the stock will certainly increase more than a hundredfold.

Enough kidding around. This is serious business. In what follows you will find some hardcore molecular biology and cellular physiology showing just what we’re up against. Some of the following is quite old, and probably out of date (like yours truly), but it does give you the broad outlines of what is involved.

The pathway from Ras to the nucleus

The components of the pathway had been found in isolation (primarily because mutations in them were associated with malignancy). Ras was discovered as an oncogene in various sarcoma viruses. Mutations in ras found in tumors left it in a ‘turned on’ state, but just how ras (and everything else) fit into the chain of binding of a growth factor (such as platelet derived growth factor, epidermal growth factor, insulin, etc. etc.) to its receptor on the cell surface to alterations in gene expression wasn’t clear. It is certain to become more complicated, because anything as important as cellular proliferation is very likely to have a wide variety of control mechanisms superimposed on it. Although all sorts of protein kinases are involved in the pathway it is important to remember that ras is NOT a protein kinase.

l. The first step is binding of a growth factor to its receptor on the cell surface. The receptor is usually a tyrosine kinase. Binding of the factor to the receptor causes ‘activation’ of the receptor. Activation usually means increasing the enzymatic activity of the receptor in the tyrosine kinase reaction (most growth factor receptors are tyrosine kinases). The increase in activity is usually brought about by dimerization of the receptor (so it phosphorylates itself on tyrosine).

2. Most activated growth factor receptors phosphorylate themselves (as well as other proteins) on tyrosine. A variety of other proteins have domains known as SH2 (for src homology 2) which bind to phosphorylated tyrosine.

3. A protein called grb2 binds via its SH2 domain to a phosphorylated tyrosine on the receptor. Grb2 binds to the polyproline domain of another protein called sos1 via its SH3 domain. At this point, the unintiated must find the proceedings pretty hokey, but the pathway is so general (and fundamental) that proteins from yeast may be substituted into the human pathway and still have it work.

4. At last we get to ras. This protein is ‘active’ when it binds GTP, and inactive when it binds GDP. Ras is a GTPase (it can hydrolyze GTP to GDP). Most mutations which make ras an oncogene decrease the GTPase activity of RAS leaving it in a permanently ‘turned on’ state. It is important for the neurologist to know that the defective gene in type I neurofibromatosis activates the GTPase activity of ras, turning ras off. Deficiencies (in ras inactivation) lead to a variety of unusual tumors familiar to neurologists.

Once RAS has hydrolyzed GTP to GDP, the GDP remains bound to RAS inactivating it. This is the function of sos1. It catalyzes the exchange of GDP for GTP on ras, thus activating ras.

5. What does activated ras do? It activates Raf-1 silly. Raf-1 is another oncogene. How does activated ras activate Raf-1 ? Ras appears to activate raf by causing raf to bind to the cell membrane (this doesn’t happen in vitro as there is no membrane). Once ras has done its job of localizing raf to the plasma membrane, it is no longer required. How membrane localization activates raf is less than crystal clear. [ Proc. Natl. Acad. Sci. vol. 93 pp. 6924 – 6928 ’96 ] There is increasing evidence that Ras may mediate its actions by stimulating multiple downstream targets of which Raf-1 is only one.

6. Raf-1 is a protein kinase. Protein kinases work by adding phosphate groups to serine, threonine or tyrosine. In general protein kinases fall into two classes those phosphorylating on serine or threonine and those phosphorylating on tyrosine. Biochemistry has a well documented series of examples of enzymes being activated (or inhibited) by phosphorylation. The best worked out is the pathway from the binding of epinephrine to its cell surface receptor to glycogen breakdown. There is a whole sequence of one enzyme phosphorylating another which then phosphorylates a third. Something similar goes on between Raf-1 and a collection of protein kinases called MAPKs (mitogen activated protein kinases). These were discovered as kinases activated when mitogens bound to their extracellular receptors.There may be a kinase lurking about which activates Raf (it isn’t Ras which has no kinase activity). Removal of phosphate from Raf (by phosphatases) inactivates it.

7. Raf-1 activates members of the MAPK family by phosphorylating them. There may be several kinases in a row phosphorylating each other. [ Science vol. 262 pp. 1065 – 1067 ’93 ] There are at least three kinase reactions at present at this point. It isn’t known if some can be sidestepped. Raf-1 activates mitogen activated protein kinase kinase (MAPK-K) by phosphorylation (it is called MEK in the ras pathway). MAPK-K activates mitogen activation protein kinase (MAPK) by phosphorylation. Thus Raf-1 is actually mitogen activated protein kinase kinase kinase (sort of like the character in Catch-22 named Junior Junior Junior). (1/06 — I think that Raf-1 is now called BRAF)

8. The final step in the pathway is activation of transcription factors (which turn genes off or on) by MAP kinases by (what else) phosphorylation. Thus the pathway from cell surface is complete.

Very sad

The failure of Lilly’s antibody against the aBeta protein is very sad on several levels. My year started out going to a memorial service for a college classmate, fellow doc and friend who died of Alzheimer’s disease. He had some 50 papers to his credit mostly involving clinical evaluation of drugs such as captopril. Even so it was an uplifting experience — here’s a link –https://luysii.wordpress.com/2016/01/05/an-uplifting-way-to-start-the-new-year/

There is a large body of theory that says it should have worked. Derek Lowe’s blog “In the Pipeline” has much more — and the 80 or so comments on his post will expose you to many different points of view on Abeta — here’s the link. http://blogs.sciencemag.org/pipeline/archives/2016/11/23/eli-lillys-alzheimers-antibody-does-not-work.

It’s time to ‘let 100 flowers bloom’ in Alzheimer’s research — https://en.wikipedia.org/wiki/Hundred_Flowers_Campaign. E. g. it’s time to look at some far out possibilities — we know that most will be wrong that they will be crushed, as Mao did to all the flowers. Even so it’s worth doing.

So to buck up your spirits, here’s an old post (not a link) raising the possibility that Alzheimer’s might be a problem in physics rather than chemistry. If that isn’t enough another post follows that one on Lopid (Gemfibrozil).

Could Alzheimer’s disease be a problem in physics rather than chemistry?

Two seemingly unrelated recent papers could turn our attention away from chemistry and toward physics as the basic problem in Alzheimer’s disease. God knows we could use better therapy for Alzheimer’s disease than we have now. Any new way of looking at Alzheimer’s, no matter how bizarre,should be welcome. The approaches via the aBeta peptide, and the enzymes producing it just haven’t worked, and they’ve really been tried — hard.

The first paper [ Proc. Natl. Acad. Sci. vol. 111 pp. 16124 – 16129 ’14 ] made surfaces with arbitrary degrees of roughness, using the microfabrication technology for making computer chips. We’re talking roughness that’s almost smooth — bumps ranging from 320 Angstroms to 800. Surfaces could be made quite regular (as in a diffraction grating) or irregular. Scanning electron microscopic pictures were given of the various degrees of roughness.

Then they plated cultured primitive neuronal cells (PC12 cells) on surfaces of varying degrees of roughness. The optimal roughness for PC12 to act more like neurons was an Rq of 320 Angstroms.. Interestingly, this degree of roughness is identical to that found on healthy astrocytes (assuming that culturing them or getting them out of the brain doesn’t radically change them). Hippocampal neurons in contact with astrocytes of this degree of roughness also began extending neurites. It’s important to note that the roughness was made with something neurons and astrocytes never see — silica colloids of varying sizes and shapes.

Now is when it gets interesting. The plaques of Alzheimer’s disease have surface roughness of around 800 Angstroms. Roughness of the artificial surface of this degree was toxic to hippocampal neurons (lower degrees of roughness were not). Normal brain has a roughness with a median at 340 Angstroms.

So in some way neurons and astrocytes can sense the amount of roughness in surfaces they are in contact with. How do they do this — chemically it comes down to Piezo1 ion channels, a story in themselves [ Science vol. 330 pp. 55 – 60 ’10 ] These are membrane proteins with between 24 and 36 transmembrane segments. Then they form tetramers with a huge molecular mass (1.2 megaDaltons) and 120 or more transmembrane segments. They are huge (2,100 – 4,700 amino acids). They can sense mechanical stress, and are used by endothelial cells to sense how fast blood is flowing (or not flowing) past them. Expression of these genes in mechanically insensitive cells makes them sensitive to mechanical stimuli.

The paper is somewhat ambiguous on whether expressing piezo1 is a function of neuronal health or sickness. The last paragraph appears to have it both ways.

So as we leave paper #1, we note that that neurons can sense the physical characteristics of their environment, even when it’s something as un-natural as a silica colloid. Inhibiting Piezo1 activity by a spider venom toxin (GsMTx4) destroys this ability. The right degree of roughness is healthy for neurons, the wrong degree kills them. Clearly the work should be repeated with other colloids of a different chemical composition.

The next paper [ Science vol. 342 pp. 301, 316 – 317, 373 – 377 ’13 ] Talks about the plumbing system of the brain, which is far more active than I’d ever imaged. The glymphatic system is a network of microscopic fluid filled channels. Cerebrospinal fluid (CSF) bathes the brain. It flows into the substance of the brain (the parenchyma) along arteries, and the fluid between the cellular elements (interstitial fluid) it exchanges with flows out of the brain along the draining veins.

This work was able to measure the amount of flow through the lymphatics by injected tracer into the CSF and/or the brain parenchyma. The important point about this is that during sleep these channels expand by 60%, and beta amyloid is cleared twice as quickly. Arousal of a sleeping mouse decreases the influx of tracer by 95%. So this amazing paper finally comes up with an explanation of why we spend 1/3 of our lives asleep — to flush toxins from the brain.

If you wish to read (a lot) more about this system — see an older post from when this paper first came out — https://luysii.wordpress.com/2013/10/21/is-sleep-deprivation-like-alzheimers-and-why-we-need-sleep-in-the-first-place/

So what is the implication of these two papers for Alzheimer’s disease?

First
The surface roughness of the plaques (800 Angstroms roughness) may physically hurt neurons. The plaques are much larger or Alzheimer would never have seen them with the light microscopy at his disposal.

Second
The size of the plaques themselves may gum up the brain’s plumbing system.

The tracer work should certainly be repeated with mouse models of Alzheimer’s, far removed from human pathology though they may be.

I find this extremely appealing because it gives us a new way of thinking about this terrible disorder. In addition it might explain why cognitive decline almost invariably accompanies aging, and why Alzheimer’s disease is a disorder of the elderly.

Next, assume this is true? What would be the therapy? Getting rid of the senile plaques in and of itself might be therapeutic. It is nearly impossible for me to imagine a way that this could be done without harming the surrounding brain.

Before we all get too excited it should be noted that the correlation between senile plaque burden and cognitive function is far from perfect. Some people have a lot of plaque (there are ways to detect them antemortem) and normal cognitive function. The work also leaves out the second pathologic change seen in Alzheimer’s disease, the neurofibrillary tangle which is intracellular, not extracellular. I suppose if it caused the parts of the cell containing them to swell, it too could gum up the plumbing.

As far as I can tell, putting the two papers together conceptually might even be original. Prasad Shastri, the author of the first paper, was very helpful discussing some points about his paper by Email, but had not heard of the second and is looking at it this weekend.

Also a trial of Lopid (Gemfibrozil) as something which might be beneficial is in progress — there is some interesting theory behind this. The trial has about another year to go. Here’s that post and happy hunting

Takes me right back to grad school

How many times in grad school did you or your friends come up with a good idea, only to see it appear in the literature a few months later by someone who’d been working on it for much longer. We’d console ourselves with the knowledge that at least we were thinking well and move on.

Exactly that happened to what I thought was an original idea in my last post — e.g. that Gemfibrozil (Lopid) might slow down (or even treat) Alzheimer’s disease. I considered the post the most significant one I’d ever written, and didn’t post anything else for a week or two, so anyone coming to the blog for any reason would see it first.

A commenter on the first post gave me a name to contact to try out the idea, but I’ve been unable to reach her. Derek Lowe was quite helpful in letting me link to the post, so presently the post has had over 200 hits. Today I wrote an Alzheimer’s researcher at Yale about it. He responded nearly immediately with a link to an ongoing clinical study in progress in Kentucky

On Aug 3, 2015, at 3:04 PM, Christopher van Dyck wrote:

Dear Dr. xxxxx

Thanks for your email. I agree that this is a promising mechanism.
My colleague Greg Jicha at U.Kentucky is already working on this:
https://www.nia.nih.gov/alzheimers/clinical-trials/gemfibrozil-predementia-alzheimers-disease

Our current efforts at Yale are on other mechanisms:
http://www.adcs.org/studies/Connect.aspx

We can’t all test every mechanism, but hopefully we can collectively test the important ones.

-best regards,
Christopher H. van Dyck, MD
Professor of Psychiatry, Neurology, and Neurobiology
Director, Alzheimers Disease Research Unit

Am I unhappy about losing fame and glory being the first to think of it? Not in the slightest. Alzheimer’s is a terrible disease and it’s great to see the idea being tested.

Even more interestingly, a look at the website for the study shows, that somehow they got to Gemfibrozil by a different mechanism — microRNAs rather than PPARalpha.

I plan to get in touch with Dr. Jicha to see how he found his way to Gemfibrozil. The study is only 1 year in duration, and hopefully is well enough powered to find an effect. These studies are incredibly expensive (and an excellent use of my taxes). I never been involved in anything like this, but data mining existing HMO data simply has to be cheaper. How much cheaper I don’t know.

Here’s the previous post —

Could Gemfibrozil (Lopid) be used to slow down (or even treat) Alzheimer’s disease?

Is a treatment of Alzheimer’s disease at hand with a drug in clinical use for nearly 40 years? A paper in this week’s PNAS implies that it might (vol. 112 pp. 8445 – 8450 ’15 7 July ’15). First a lot more background than I usually provide, because some family members of the afflicted read everything they can get their hands on, and few of them have medical or biochemical training. The cognoscenti can skip past this to the text marked ***

One of the two pathologic hallmarks of Alzheimer’s disease is the senile plaque (the other is the neurofibrillary tangle). The major component of the plaque is a fragment of a protein called APP (Amyloid Precursor Protein). Normally it sits in the cellular membrane of nerve cells (neurons) with part sticking outside the cell and another part sticking inside. The protein as made by the cell contains anywhere from 563 to 770 amino acids linked together in a long chain. The fragment destined to make up the senile plaque (called the Abeta peptide) is much smaller (39 to 42 amino acids) and is found in the parts of APP embedded in the membrane and sticking outside the cell.

No protein lives forever in the cell, and APP is no exception. There are a variety of ways to chop it up, so its amino acids can be used for other things. One such chopper is called ADAM10 (aka Kuzbanian). ADAM10breaks down APP in such a way that Abeta isn’t formed. The paper essentially found that Gemfibrozil (commercial name Lopid) increases the amount of ADAM10 around. If you take a mouse genetically modified so that it will get senile plaques and decrease ADAM10 you get a lot more plaques.

The authors didn’t artificially increase the amount of ADAM10 to see if the animals got fewer plaques (that’s probably their next paper).

So there you have it. Should your loved one get Gemfibrozil? It’s a very long shot and the drug has significant side effects. For just how long a shot and the chain of inferences why this is so look at the text marked @@@@

****

How does Gemfibrozil increase the amount of ADAM10 around? It binds to a protein called PPARalpha which is a type of nuclear hormone receptor. PPARalpha binds to another protein called RXR, and together they turn on the transcription of a variety of genes, most of which are related to lipid metabolism. One of the genes turned on is ADAM10, which really has never been mentioned in the context of lipid metabolism. In any event Gemfibrozil binds to PPARalpha which binds more effectively to RAR which binds more effectively to the promoter of the ADAM10 gene which makes more ADAM10 which chops of APP in such fashion that Abeta isn’t made.

How in the world the authors got to PPARalpha from ADAM10 is unknown — but I’ve written the following to the lead author just before writing this post.

Dr. Pahan;

Great paper. People have been focused on ADAM10 for years. It isn’t clear to me how you were led to PPARgamma from reading your paper. I’m not sure how many people are still on Gemfibrozil. Probably most of them have some form of vascular disease, which increases the risk of dementia of all sorts (including Alzheimer’s). Nonetheless large HMOs have prescription data which can be mined to see if the incidence of Alzheimer’s is less on Gemfibrozil than those taking other lipid lowering agents, or the population at large. One such example (involving another class of drugs) is JAMA Intern Med. 2015;175(3):401-407, where the prescriptions of 3,434 individuals 65 years or older in Group Health, an integrated health care delivery system in Seattle, Washington. I thought the conclusions were totally unwarranted, but it shows what can be done with data already out there. Did you look at other fibrates (such as Atromid)?

Update: 22 July ’15

I received the following back from the author

Dear Dr.

Wonderful suggestion. However, here, we have focused on the basic science part because the NIH supports basic science discovery. It is very difficult to compete for NIH R01 grants using data mining approach.

It is PPARα, but not PPARγ, that is involved in the regulation of ADAM10. We searched ADAM10 gene promoter and found a site where PPAR can bind. Then using knockout cells and ChIP assay, we confirmed the participation of PPARα, the protein that controls fatty acid metabolism in the liver, suggesting that plaque formation is controlled by a lipid-lowering protein. Therefore, many colleagues are sending kudos for this publication.

Thank you.

Kalipada Pahan, Ph.D.

The Floyd A. Davis, M.D., Endowed Chair of Neurology

Professor

Departments of Neurological Sciences, Biochemistry and Pharmacology

So there you have it. An idea worth pursuing according to Dr. Pahan, but one which he can’t (or won’t). So, dear reader, take it upon yourself (if you can) to mine the data on people given Gemfibrozil to see if their risk of Alzheimer’s is lower. I won’t stand in your way or compete with you as I’m a retired clinical neurologist with no academic affiliation. The data is certainly out there, just as it was for the JAMA Intern Med. 2015;175(3):401-407 study. Bon voyage.

@@@@

There are side effects, one of which is a severe muscle disease, and as a neurologist I saw someone so severely weakened by drugs of this class that they were on a respirator being too weak to breathe (they recovered). The use of Gemfibrozil rests on the assumption that the senile plaque and Abeta peptide are causative of Alzheimer’s. A huge amount of money has been spent and lost on drugs (antibodies mostly) trying to get rid of the plaques. None have helped clinically. It is possible that the plaque is the last gasp of a neuron dying of something else (e.g. a tombstone rather than a smoking gun). It is also possible that the plaque is actually a way the neuron was defending itself against what was trying to kill it (e.g. the plaque as a pile of spent bullets).

A scary paper: Cancer by proxy

Can a good kid growing up in a bad neighborhood turn bad? Most think so. What about a genetically normal cell growing up in a bad neighborhood? Can it turn cancerous if its neighbors have a mutation ? A recent paper [ Nature vol. 539 pp.304 – 308 ’16b] demonstrates how this can happen.

A gene called PTPN11 is mutated in myelomonocytic leukemia (MML)in humans and mice. Expressing the mutant in blood cells causes leukemia in mice (nothing spectacular there).

However, expressing the mutant in marrow supporting cells, not blood cells or blood stem cells for long enough gives MML in mice which can be transplanted into normal mice producing MML there.

Note that the blood stem cells don’t contain the mutant gene. One theory has it that mutant PTPN11 recruits monocytes, which then produce other stuff (CCL3 also known as MIP1alpha and interleukin1Beta), which then turns on blood stem cells to proliferate madly causing leukemia. Giving a CCL3 receptor antagonist reverses the myeloproliferation (but it isn’t clear to me if it reverses the leukemia once established)

As far as we know the cells developing into MML don’t contain mutant PTPN11. So it’s cancer by proxy. Obviously some changes (mutations, epigenetic changes) have have occurred in the leukemic cells, but at this point we don’t know what they are.

What is ICP27 trying to tell us? One of you could get a PhD if you figure it out !

It wouldn’t be the first time a viral protein led us to an important cellular mechanism. Consider what the polio virus taught us about the translation of mRNA into protein. It cleaves two components of eIF-4F (eukaryotic Initiation (of ribosome translation of mRNA into protein) Factor 4F totally shutting down synthesis of mRNAs with a cap on their 5′ end (which is most of them). Poliovirus proteins don’t have these caps so their proteins continue to be made.

Well this brings us to ICP27 (Infected Cell Protein 27) a product of the Herpes Simplex virus. You can read all about it in [ Proc. Natl. Acad. Sci. vol. 113 pp. 12256 – 12261 ’16 ]. ICP27 is essential for herpes virus infection. This work shows that it inhibits intron splicing (but in under 1% of cellular genes) and also promotes the use of alternative 5′ splice sites.

It also induces the expression of pre-mRNAS prematurely cleaved and polyAdenylated from cryptic polyAdenylation signals located in intron 1 or intron 2 of an amazing 1% of all cellular genes. These prematurely cleaved and polyAdenylated mRNA sometimes contain novel open reading frames (ORFs). They are typically intronless (they should be) and under 2 kiloBases long. They are expressed early during viral infection and efficiently exported to cytoplasm. The ICP27 targeted genes are GC rich (as are all Herpes simplex genes), contain cytosine rich sequences near the 5′ splice site.

The paper also showed that optimization of splice site sequences, or mutation of nearby cytosines eliminated ICP27 mediated splicing inhibition. Introduction of cytosine rich sequences to an ICP27 INsensitive splicing reporter conferred susceptibility to ICP27.

How is this going to help you get a PhD? Ask yourself. What are cryptic polyAdenylation signals doing in the first two introns in so many genes? It seems obvious (to me) that as well as the virus the cell is using them for some purpose. It isn’t hard to mutate something to the signal for polyadenylation AAUAAA. Interestingly cleavage doesn’t occur here, but 30 nucleotides or so downstream. The sequence occurs every 4^6 == 4096 nucleotides (if they’re random). I’m not sure what the total length of introns #1 and #2 are of our 20,000 or so protein coding genes, but someone should be able to find out and see if 200 occurrences of this sequence is more than would be expected by chance.

The plot thickens when the paper notes that “Over 200 genes are affected by ICP27. Over 30 (including PML, STING, TRAF6, PPP6C, MAP3K7, FBXw11, IFNAR2, NKFB1, RELA and CREBP are related to the immune pathway). Do you think the cell doesn’t use this pathway as well?

What about the existence of other viral (and cellular) proteins doing the same sort of thing (but on different introns perhaps). What are those novel open reading frames in the alternatively spliced mRNAs doing?

Fascinating stuff. Time to get busy if you’re an enterprising grad student, or young faculty member.