Tag Archives: Lindsay Burns

The science behind Cassava Sciences (SAVA) — the latest as of 23 April ’23

It’s time for an update on the science  behind Cassava Sciences’ anti-Alzheimer drug, Simufilam.  It is  based on an older post of mine and a review of the published literature and my decades of experience as a clinical neurologist.

Disclaimer:  My wife and I have known Lindsay Burns, one of the Cassava Sciences principals since she was a teenager and we were friendly with her parents when I practiced neurology in Montana.

But as H. L. Mencken said, “A Professor must have a theory as a dog must have fleas”, and the reason I’m excited about Simufilam has nothing to do with the theory of the science behind it.  Simply put, the results of Cassava’s open label trial have never  been seen with Alzheimer’s patients.  10% improved by nearly 50% at 1 year, and over half did not deteriorate.  As a clinical neurologist with decades of experience seeing hundreds of demented people, I never saw anything like this, especially significant improvement after a year).  For more detail please see https://luysii.wordpress.com/2021/08/25/cassava-sciences-9-month-data-is-probably-better-than-they-realize/

Here is the science behind the drug.  We’ll start with the protein the drug is supposed to affect — filamin A, a very large protein (2,603 amino acids to be exact).  I’ve known about it for years because it crosslinks actin in muscle, and I read everything I could about it, starting back in the day when I ran a muscular dystrophy clinic in Montana.

Filamin binds actin by its amino terminal domain.  It forms a dimerization domain at its carboxy terminal end.  In between are 23 repeats of 96 amino acids which resemble immunoglobulin — forming a rod 800 Angstroms long.  The dimer forms a V with the actin binding domain at the two tips of the V, making it clear how it could link actin filaments together.

Immunoglobulins are good at binding things and 90 different proteins are known to which filamin A binds.  This is an enormous potential source of trouble.

As one might imagine, filamin A could have a lot of conformations in addition to the V, and the pictures shown in https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2099194/.

One such altered (from the V) conformation binds to the alpha7 nicotinic cholinergic receptor on the surface of neurons and Toll-Like Receptor 4 (TLR4) inside the cell.

Abeta42, the toxic peptide, has been known for years to bind tightly to the alpha7 nicotinic receptor — they say in the femtoMolar (10^-15 Molar) range, although I have my doubts as to whether such tiny concentration values are meaningful.  Let’s just say the binding is tight and that femtoMolar binding is tighter than picoMolar is tighter than nanoMolar is tighter than microMolar  binding etc., etc.

When aBeta42 binds to alpha7 on the outside of the neuronal plasma membrane  filamin A binds to alpha 7 on the inside making  aBeta42 binding even tighter.

The tight binding causes signaling inside the cell  to hyperphosphorylate the tau protein forming the neurofibrillary tangle, which is more directly correlated with dementia in Alzheimer’s disease than the number of senile plaques.

In more detail, the high affinity aBeta42-alpha7 nicotinic cholinergic receptor binding activates the MAPK cascade (Mitogen Activated Protein Kinase cascade), ending in activation of the protein kinases ERK2, and JNK1.  Activated protein kinases catalyze the addition of phosphate to proteins forming an ester with the free hydroxyl groups of serine and/or threonine.  Activating ERK2 and JNK1 allows them to phosphorylate the tau protein leading to the neurofibrillary tangle of  Alzheimer’s disease (which is just a mess of hyperphosphorylated tau protein).

But there is still more about the mechanism which isn’t clear.  Recall that MAPK stands for Mitogen Activated Protein Kinase where a mitogen binds to a receptor on the cell surface, and a mitogen is nowhere in sight here, so there are still a few missing steps between aBeta42 binding to the alpha7 nicotinic cholinergic receptor and MAPK activation.  The references do show that MAPK signaling, ERK2 and JNK1 are activated when aBeta42 binds to the alpha7 nicotinic acetyl choline receptor.

Also the mechanism is radical in the extreme. The nicotinic acetyl choline receptor is a receptor all right but for acetyl choline. It is an ion channel and   looks nothing like the receptors that proteins and peptides bind to which are usually G Protein Coupled Receptors (GPCRs) or Receptors with Tyrosine Kinase activity (RTKs).  Also aBeta42 is not a mitogen.

So what does Sumifilam actually do — it changes the ‘altered’ conformation of filamin A getting it away from the alpha7 acetyl choline receptor and “indirectly reducing the high femtoMolar binding affinity of aBeta42 for alpha7” (and however this binding triggers tau hyperphosphorylation)  How do they know the conformation of filamin A has changed?  They haven’t done cryoEM or Xray crystallography on the protein.  The only evidence for a change in conformation, is a change in the electrophoretic mobility (which is pretty good evidence, but I’d like to know what conformation is changed to what).

So there you have it, after a fairly deep dive into protein chemistry, cellular physiology and biochemistry, the current thinking of how Simufilam works.

But even if the theory is completely wrong, the data in the link above must be regarded with respect.  Clinical blinded studies are ongoing, and the soon to be released Cognition Maintenance Study should  give us more information –https://luysii.wordpress.com/2023/03/02/the-cognition-maintenance-study-of-simufilam/

Why the results of the open label trial of Simufilam will be misinterpreted

Cassava Sciences said they will release the results of the 200 person open label trial this year.  I think the results are likely to be misunderstood.

First: a disclaimer.  I have no inside information about the results of the trial.  I have known Lindsay Burns since she was in high school, as my wife and I were friendly with her parents when I practiced neurology in Montana.  Lindsay comes from smart .people, father Horatio went through Harvard in under 4 years getting a degree in physics.

Lindsay and I have been contact for over 10 years, mostly concerning the science behind Alzheimer’s disease and Simufilam,.  We do schmooze a bit about Montana and our time there and the vituperation she and Cassava Sciences have been exposed to.

Lindsay and I are well aware about the use of inside information, particularly since both of my wife’s parents had lifelong careers at the SEC, beginning in the depression.

Let’s assume that the results in the open label trial on 200 patients for 1 year are similar to those released in August of 2021 on the first 50 patients in the study to have been on Simulfilam for 9 months.

10% of the patients likely had at least a 50% improvement in their ADAS-Cog-11 score, and over 50% had some improvement.  Some, of course got worse, so the overall improvement of the group  at 9 months as a whole was slight but real.

Let’s say the results on the whole 200 are similar, with 20 or so patients showing similar 50% improvement, but the group overall showing only slight improvement.

These results, even though open label and unblinded, would be unprecedented.  People with Alzheimer’s have good and bad days, but NONE are better after a year.  Throw in all the studies with monoclonal antibodies against aBeta, and you won’t see results like this.  The best they have to offer is a slightly slower (25 – 50%) rate of decline.  This is also true for the demented patients I saw in over 30 years of clinical practice.  So even though the study is open label, we have a ton of controls outside the study.

Even if Simufilam significantly helps 10% of those receiving it, these are results worth having and should lead to early adoption of Simufilam

6 months down the road the Cognition Maintenance Study (which is blinded and placebo controlled) should give a more definitive answer, leading to early adoption.

Here is a link to a more lengthy analysis of the first 50 cases to go 9 months

Cassava Sciences 9 month data is probably better than they realize

Here is a link to a description of the Cognition Maintenance study

Cassava’s Cognition Maintenance Study may prove Simufilam works

FDA Amylyx approval 7 September implies Simufilam will be FDA approved this year

On 7 September an FDA advisory board reversed itself and recommended approval for a drug for ALS — https://www.wsj.com/articles/amylyxs-als-drug-backed-by-fda-advisers-11662590651?mod=newsviewer_click.  The head of the FDA Office of Neuroscience (Billy Dunn) gave a verbal endorsement, making it likely that Amylyx’s drug would be approved.

What does this have to do with the approval of Simufilam this year? Amylyx did a post-hoc, retrospective “responder analysis” that showed patients who did respond to drug (vs placebo) had “an usually strong response”, i.e., a bunch of non-responders in the general population masked the beneficial effects of the drug. This, after the same committee in March turned the drug down due to lack of efficacy in the studied cohort as a whole.

You may recall that I thought Cassava’s results with Simufilam were better than they realized after they released the data on the first 50 patients in the open trail reaching the 9 month endpoint. The full post published 25 August 2021 can be found below the &&&&&. 5/50 had a greater than 50% improvement in their ADAS-Cog11 score (by more than 10 points).  Data like this in Alzheimer’s has never been seen before in any study, or in my clinical experience.  So the data can not be explained by Cherry-picking.  The only other explanations are (1) Fraud (2) incompetent ADAS-Cog11 measurement (3) people without Alzheimer’s entering the study for the money, all of which I think are remote.  Also, the average decline at one year in ADAS-Cog in Alzheimer patients is 5 points.

So Cassava has data similar to Amylyx’s on the first 50 of the 200 in the open label study.  The last of the 200 will complete their full year on the drug by the end of 2022, at which point data will be released.  If the results on the 200 patients are similar to those on the first 50 (say 20/200 having significant (greater than 50% change for the better in ADAS-Cog) improvement, Cassava will have a (strong in my opinion) argument for Simufilam approval.

Clinicians know that patients always respond variably to any sort of therapy. We now know why.  Given that the human genome contains 3,200,000,000 positions.  Full genome sequencing of well over 100,000 people has shown that any two people will differ at one position in a thousand — that’s 3,200,000 differences  — source   https://www.ncbi.nlm.nih.gov/books/NBK20363/

 

Gentlemen start your engines

&&&&&

Cassava Sciences 9 month data is probably better than they realize

My own analysis of the Cassava Sciences 9 month data shows that it is probably even better than they realize.

Here is a link to what they released — keep it handy https://www.cassavasciences.com/static-files/13794384-53b3-452c-ae6c-7a09828ad389.

I was unable to listen to Lindsay Burn’s presentation at the Alzheimer Association International Conference in July as I wasn’t signed up.  I have been unable to find either a video or a transcript, so perhaps Lindsay did realize what I’m about to say.

Apparently today 25 August there was another bear attack on the company and its data.  I’ve not read it or even seen what the stock did.  In what follows I am assuming that everything they’ve said about their data is true and that their data is what they say it is.

So the other day I had a look at what Cassava released at the time of Lindsay’s talk.

First some background on their study.  It is a report on the first 50 patients who had received Simulfilam for 9 months.  It is very important to understand how they were measuring cognition.  It is something called ADAS-Cog11

Here it is and how it is scored and my source — https://www.verywellhealth.com/alzheimers-disease-assessment-scale-98625

The original version of the ADAS-Cog consists of 11 items, including:1

1. Word Recall Task: You are given three chances to recall as many words as possible from a list of 10 words that you were shown. This tests short-term memory.

2. Naming Objects and Fingers: Several real objects are shown to you, such as a flower, pencil and a comb, and you are asked to name them. You then have to state the name of each of the fingers on the hand, such as pinky, thumb, etc. This is similar to the Boston Naming Test in that it tests for naming ability, although the BNT uses pictures instead of real objects, to prompt a reply.

3. Following Commands: You are asked to follow a series of simple but sometimes multi-step directions, such as, “Make a fist” and “Place the pencil on top of the card.”

4. Constructional Praxis: This task involves showing you four different shapes, progressively more difficult such as overlapping rectangles, and then you will be asked to draw each one. Visuospatial abilities become impaired as dementia progresses and this task can help measure these skills.

5. Ideational Praxis: In this section, the test administrator asks you to pretend you have written a letter to yourself, fold it, place it in the envelope, seal the envelope, address it and demonstrate where to place the stamp. (While this task is still appropriate now, this could become less relevant as people write and send fewer letters through the mail.)

6. Orientation: Your orientation is measured by asking you what your first and last name are, the day of the week, date, month, year, season, time of day, and location. This will determine whether you are oriented x 1, 2, 3 or 4.

7. Word Recognition Task: In this section, you are asked to read and try to remember a list of twelve words. You are then presented with those words along with several other words and asked if each word is one that you saw earlier or not. This task is similar to the first task, with the exception that it measures your ability to recognize information, instead of recall it.

8. Remembering Test Directions: Your ability to remember directions without reminders or with a limited amount of reminders is assessed.

9. Spoken Language: The ability to use language to make yourself understood is evaluated throughout the duration of the test.

10. Comprehension: Your ability to understand the meaning of words and language over the course of the test is assessed by the test administrator.

11. Word-Finding Difficulty: Throughout the test, the test administrator assesses your word-finding ability throughout spontaneous conversation.

What the ADAS-Cog Assesses

The ADAS-Cog helps evaluate cognition and differentiates between normal cognitive functioning and impaired cognitive functioning. It is especially useful for determining the extent of cognitive decline and can help evaluate which stage of Alzheimer’s disease a person is in, based on his answers and score. The ADAS-Cog is often used in clinical trials because it can determine incremental improvements or declines in cognitive functioning.2

Scoring

The test administrator adds up points for the errors in each task of the ADAS-Cog for a total score ranging from 0 to 70. The greater the dysfunction, the greater the score. A score of 70 represents the most severe impairment and 0 represents the least impairment.

The average score of the 50 individuals entering was 17 with a standard deviation of 8, meaning that about 2/3 of the group entering had scores of 9 to 25 and that 96% had scores of 1 to 32 (but I doubt that anyone would have entered the study with a score of 1 — so I’m assuming that the lowest score on entry was 9 and the highest was 25).  Cassava Sciences has this data but I don’t know what it is.

Now follow the link to Individual Patient Changes in ADAS-Cog (N = 50) and you will see 50 dots, some red, some yellow, some green.

Look at the 5 individuals who fall between -10 and – 15 and think about what this means.  -10 means that an individual made 10 fewer errors at 9 months than on entry into the study.  Again, I have no idea what the scores of the 5 were on entry.

So assume the worst and that the 5 all had scores of 25 on entry.  The group still showed a 50% improvement from baseline as they look like they either made 12, 13, or 14 fewer errors.  If you assume that the 5 had the average impairment of 17 on entry, they were nearly normal after 9 months of treatment.  That doesn’t happen in Alzheimer’s and is a tremendous result.   Lindsay may have pointed this out in her talk, but I don’t know although I’ve tried to find out.

Is there another neurologic disease with responses like this.  Yes there is, and I’ve seen it.

I was one of the first neurologists in the USA to use L-DOPA for Parkinsonism.  All patients improved, and I actually saw one or two wheelchair bound Parkinsonians walk again (without going to Lourdes).  They were far from normal, but ever so much better.

However,  treated mildly impaired Parkinsonians became indistinguishable from normal, to the extent that I wondered if I’d misdiagnosed them.

12 to 14 fewer errors is a big deal, an average decrease of 3 errors, not so much, but still unprecedented in Alzheimer’s disease.   Whether this is clinically meaningful is hard to tell.  However, 12 month data on the 50 will be available in the fourth quarter of ’21, and if the group as a whole continues to improve over baseline it will be a very big deal as it will tell us a lot about Alzheimer’s.

Cassava Sciences has all sorts of data we’ve not seen (not that they are hiding it).  Each of the 50 has 4 data points (entry, 3, 6 and 9 months) and it would be interesting to see the actual scores rather than the changes between them in all 50.  Were the 5 patients with the 12 – 14 fewer errors more impaired (high ADAS-Cog11 score in entry) or less.

Was the marked improvement in the 5 slow and steady or sudden?   Ditto for the ones who deteriorated or who got much worse or who slightly improved.

Even if such dramatic improvement is confined to 10% of those receiving therapy it is worth a shot to give it to all.  Immune checkpoint blockade has dramatically helped some patients with cancer  (far from all), yet it is tried in many.

Disclaimer:  My wife and I have known Lindsay since she was a teenager and we were friendly with her parents.  However, everything in this post is on the basis of public information available to anyone (and of course my decades of experience as a clinical neurologist)

 

I’ve hit the big time at last

I find this hard to believe, but the interview I did with Joe Springer on Friday 4 February  now has its own cliff notes —  It was a lot of fun while I was doing it, but the stress came before and afterwards.  People did seem to like it, judging by the comments they made while I was talking.

Cassava Sciences 9 month data is probably better than they realize

My own analysis of the Cassava Sciences 9 month data shows that it is probably even better than they realize.

Here is a link to what they released — keep it handy https://www.cassavasciences.com/static-files/13794384-53b3-452c-ae6c-7a09828ad389.

I was unable to listen to Lindsay Burn’s presentation at the Alzheimer Association International Conference in July as I wasn’t signed up.  I have been unable to find either a video or a transcript, so perhaps Lindsay did realize what I’m about to say.

Apparently today 25 August there was another bear attack on the company and its data.  I’ve not read it or even seen what the stock did.  In what follows I am assuming that everything they’ve said about their data is true and that their data is what they say it is.

So the other day I had a look at what Cassava released at the time of Lindsay’s talk.

First some background on their study.  It is a report on the first 50 patients who had received Simulfilam for 9 months.  It is very important to understand how they were measuring cognition.  It is something called ADAS-Cog11

Here it is and how it is scored and my source — https://www.verywellhealth.com/alzheimers-disease-assessment-scale-98625

The original version of the ADAS-Cog consists of 11 items, including:1

1. Word Recall Task: You are given three chances to recall as many words as possible from a list of 10 words that you were shown. This tests short-term memory.

2. Naming Objects and Fingers: Several real objects are shown to you, such as a flower, pencil and a comb, and you are asked to name them. You then have to state the name of each of the fingers on the hand, such as pinky, thumb, etc. This is similar to the Boston Naming Test in that it tests for naming ability, although the BNT uses pictures instead of real objects, to prompt a reply.

3. Following Commands: You are asked to follow a series of simple but sometimes multi-step directions, such as, “Make a fist” and “Place the pencil on top of the card.”

4. Constructional Praxis: This task involves showing you four different shapes, progressively more difficult such as overlapping rectangles, and then you will be asked to draw each one. Visuospatial abilities become impaired as dementia progresses and this task can help measure these skills.

5. Ideational Praxis: In this section, the test administrator asks you to pretend you have written a letter to yourself, fold it, place it in the envelope, seal the envelope, address it and demonstrate where to place the stamp. (While this task is still appropriate now, this could become less relevant as people write and send fewer letters through the mail.)

6. Orientation: Your orientation is measured by asking you what your first and last name are, the day of the week, date, month, year, season, time of day, and location. This will determine whether you are oriented x 1, 2, 3 or 4.

7. Word Recognition Task: In this section, you are asked to read and try to remember a list of twelve words. You are then presented with those words along with several other words and asked if each word is one that you saw earlier or not. This task is similar to the first task, with the exception that it measures your ability to recognize information, instead of recall it.

8. Remembering Test Directions: Your ability to remember directions without reminders or with a limited amount of reminders is assessed.

9. Spoken Language: The ability to use language to make yourself understood is evaluated throughout the duration of the test.

10. Comprehension: Your ability to understand the meaning of words and language over the course of the test is assessed by the test administrator.

11. Word-Finding Difficulty: Throughout the test, the test administrator assesses your word-finding ability throughout spontaneous conversation.

What the ADAS-Cog Assesses

The ADAS-Cog helps evaluate cognition and differentiates between normal cognitive functioning and impaired cognitive functioning. It is especially useful for determining the extent of cognitive decline and can help evaluate which stage of Alzheimer’s disease a person is in, based on his answers and score. The ADAS-Cog is often used in clinical trials because it can determine incremental improvements or declines in cognitive functioning.2

Scoring

The test administrator adds up points for the errors in each task of the ADAS-Cog for a total score ranging from 0 to 70. The greater the dysfunction, the greater the score. A score of 70 represents the most severe impairment and 0 represents the least impairment.

The average score of the 50 individuals entering was 17 with a standard deviation of 8, meaning that about 2/3 of the group entering had scores of 9 to 25 and that 96% had scores of 1 to 32 (but I doubt that anyone would have entered the study with a score of 1 — so I’m assuming that the lowest score on entry was 9 and the highest was 25).  Cassava Sciences has this data but I don’t know what it is.

Now follow the link to Individual Patient Changes in ADAS-Cog (N = 50) and you will see 50 dots, some red, some yellow, some green.

Look at the 5 individuals who fall between -10 and – 15 and think about what this means.  -10 means that an individual made 10 fewer errors at 9 months than on entry into the study.  Again, I have no idea what the scores of the 5 were on entry.

So assume the worst and that the 5 all had scores of 25 on entry.  The group still showed a 50% improvement from baseline as they look like they either made 12, 13, or 14 fewer errors.  If you assume that the 5 had the average impairment of 17 on entry, they were nearly normal after 9 months of treatment.  That doesn’t happen in Alzheimer’s and is a tremendous result.   Lindsay may have pointed this out in her talk, but I don’t know although I’ve tried to find out.

Is there another neurologic disease with responses like this.  Yes there is, and I’ve seen it.

I was one of the first neurologists in the USA to use L-DOPA for Parkinsonism.  All patients improved, and I actually saw one or two wheelchair bound Parkinsonians walk again (without going to Lourdes).  They were far from normal, but ever so much better.

However,  treated mildly impaired Parkinsonians became indistinguishable from normal, to the extent that I wondered if I’d misdiagnosed them.

12 to 14 fewer errors is a big deal, an average decrease of 3 errors, not so much, but still unprecedented in Alzheimer’s disease.   Whether this is clinically meaningful is hard to tell.  However, 12 month data on the 50 will be available in the fourth quarter of ’21, and if the group as a whole continues to improve over baseline it will be a very big deal as it will tell us a lot about Alzheimer’s.

Cassava Sciences has all sorts of data we’ve not seen (not that they are hiding it).  Each of the 50 has 4 data points (entry, 3, 6 and 9 months) and it would be interesting to see the actual scores rather than the changes between them in all 50.  Were the 5 patients with the 12 – 14 fewer errors more impaired (high ADAS-Cog11 score in entry) or less.

Was the marked improvement in the 5 slow and steady or sudden?   Ditto for the ones who deteriorated or who got much worse or who slightly improved.

Even if such dramatic improvement is confined to 10% of those receiving therapy it is worth a shot to give it to all.  Immune checkpoint blockade has dramatically helped some patients with cancer  (far from all), yet it is tried in many.

Disclaimer:  My wife and I have known Lindsay since she was a teenager and we were friendly with her parents.  However, everything in this post is on the basis of public information available to anyone (and of course my decades of experience as a clinical neurologist)

 

Cassava Sciences: What happened and what they should do next

The results of 9 months treatment with Sumafilam reported 29 July were exactly what I had hoped for;  namely continued improvement over baseline and over the 3 and 6 month interim results.  Yet the stock tanked that day, and has come back about 50% from the low.  It’s the old sick joke, the operation was a success but the patient was a failure.

I had a few guesses as to what happened in a post I wrote 30 July

” In the past few months, all companies with drugs for Alzheimer’s disease have been fluctuating in price together, and one of them (to remain nameless to protect the innocent) had the temerity to release a 25 day study today on their drug based on 14 patients.  The stock was down 60%.

 

So Cassava got tarred with this brush.

 

Another likely reason is that the rise in Cassava was fueled by very small investors.  If you watched the transactions on a day SAVA was soaring, the purchases were rarely over 200.  So many of them were likely buying because others were.  So they sold when others were.  Lemmings anyone?”

 

My guesses were totally wrong.  What actually happened was a very well timed and very well coordinated bear attack on the price of the stock.

 

As Lindsay Burns was presenting positive data the morning of July 29th, an article run by a guy with a political science degree attacked her data, using 3 neurologists, all developing other drugs for Alzheimer’s disease. At the same time some 200 Million  dollars worth of sell orders were placed (likely by several hedge funds).  The stock tanked.

 

Reality has subsequently intruded, as SAVA’s stock has rebounded 50% from the attack.

 

So what should Cassava do at this point?  Assume, as time passes, that patients continue improve or remain stable (as they already have for 9 months).  Within the next 3 months, and possibly sooner, SAVA will have  1 year results.  If patient cognition continues to show improvement (over 9 months, over baseline), game over.  No one taking care of an Alzheimer patient has ever seen them better off cognitively after a year has passed. .

 

The bears should not be forewarned as they have been. The 12 month results should released without warning, early in the week, so the bears don’t have the weekend to respond.  It would be an interesting short squeeze.

If you decided to buy Cassava Sciences yesterday everything went perfectly (except the price)

Yesterday I laid out the pros and cons of buying Cassava Sciences that day.  The post is reproduced below the ***

Everything I hoped for came true.  The 50 patients on Sumafilam were followed for 9 months and their ADAS-CoG score improved by 3 points.  This is unprecedented for any Alzheimer’s drug.  Historical controls show that Alzheimer patients lost 5 points a year on ADAS-CoG.  So this is a potential net gain with therapy vs. no therapyof  6 – 7 ADAS-CoG points.  Recall that a perfect ADAS-CoG score is 70.  I’ve been unable to find what the average score of 50 patients was on entry.  The paper isn’t published, but is public record results having been presented at conferences (such as today).  Recall that historical controls must be used as the study was open label (e.g. no concurrent controls).

Addendum 30 July:  Since everything turns on ADAS-CoG, here is a link to a complete description along with some discussion — https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5929311/

On a slide from Cassava’s presentation yesterday the ADAS-CoG average of the 50 patients on entry 9 months ago was 16.6.  With a perfect score of 70, it’s clear that these people were significantly impaired (please look at the test items to see how simple the tasks in ADAS-CoG actually are).    So an improvement of 3 points at 9 months is significant, particularly since a drop of 5 points is expected each year — yes I’ve seen plenty of Alzheimer patients with ADAS-CoG scores of zero or close to it. 

However using historical controls is a no no particularly in neurology and cardiology.

Why?

From an old post “MDs gradually woke up to the fallacy of using historical rather than concurrent controls particularly in studies of therapies to prevent heart attack and stroke, as the rates of both dropped significantly in the past 50 years, and survival from individual heart attacks and strokes also improved.

 

However, I think using ADAS-CoG is OK in Alzheimer’s as we’re  talking about a disorder with no useful therapy.

 

I’m pleased that I saw the possibility of continued improvement in cognition in yesterday’s post.

 

So all my hopes for the drug came true, yet the stock tanked, closing at 103 down 32 points (down 24%) !

 

Why?  Well, in the past few months, all companies with drugs for Alzheimer’s disease have been fluctuating in price together, and one of them (to remain nameless to protect the innocent) had the temerity to release a 25 day study today on their drug based on 14 patients.  The stock was down 60%.

 

So Cassava got tarred with this brush.

 

Another likely reason is that the rise in Cassava was fueled by very small investors.  If you watched the transactions on a day SAVA was soaring, the purchases were rarely over 200.  So many of them were likely buying because others were.  So they sold when others were.  Lemmings anyone?

 

Nonetheless, SAVA’s data is much better than Biogen’s awful (and expensive) Aduhelm, so that Sumafilam is almost certain to be approved (1) if the data continue to be good (2) if a controlled trial controlled underway produces the same result.

 

So I think, in the long run, that the stock has a bright future, but as John Keynes said “In the long run we are all dead”

 

*** Yesterday’s post

 

Should you buy Cassava Sciences today?

Tomorrow Cassava Sciences will announce the interim results of an open label trial of its Alzheimer drug Sumafilam in 50 patients receiving the drug for 9 months. Should you buy the stock today?

The stock (symbol SAVA) has had a huge run this year starting at 7 and closing yesterday 27 July ’21 at 127.50.

I’ve been interested in the stock for several reasons

l. As a neurologist, I’ve watched patients, family members and friends deteriorate and die, being totally unable to help them.

2. I’ve known one of the principals in the company since she was a teenager in Montana — Lindsay Burns https://luysii.wordpress.com/2021/02/02/montana-girl-does-good-real-good/

3. Sumafilam is thought to work by a completely different mechanism of action than previous approaches (all of which have failed to produce a useful drug)– https://luysii.wordpress.com/2021/03/25/the-science-behind-cassava-sciences-sava/

In fact some of these therapies have actually made Alzheimer’s worse [ Nature Reviews Drug Discovery vol. 18 p. 327 ’19 ]

Tomorrow’s results should move the stock significantly.  If there is no improvement in cognition the stock will plummet.  If there is improvement the stock should soar, at least double again.  Why? Because we have no useful therapy.  Forget Biogen’s drug Aduhelm — the FDA advisory committee resigned in protest after the drug was approved, as the evidence for help was minimal at best.

Of course I’m rooting for the drug as a clinician and as a friend of Lindsay.

There is some evidence that the results tomorrow will show that the drug helps

A prior analysis after six months showed patients taking Cassava’s medication had a 10% improvement on cognition and 29% improvement on an inventory of dementia-related behavior, like delusions and anxiety.

 

The author of the article didn’t realize just how unprecedented these results are.  The numbers of patients (50) and the time (6 months) are long enough to make statistical fluke unlikely.

 

It is even possible that the patients will continue to improve — from the 6 month results, in which case the stock will go bananas.

 

Here’s why.
This isn’t in the books, but there is a precedent for continued improvement on Sumafilam based on my clinical experience with Parkinson’s disease.

 

I was one of the first docs able to prescribe L-DOPA for Parkinsonism in 9/70.  L-DOPA was released in the USA that month, after unconsciounable delay by the FDA.  I’d just left the Air Force and was starting to finish up my neurology residency at the University of Colorado.  The chief (James Austin) called me in and tasked me with setting up the brand new L-DOPA clinic.

 

 
We didn’t know what the drug would do, so we proceeded very cautiously.  Giving a little, watching, waiting, giving a little more, watching, waiting.  Wash rinse repeat.  The results were dramatic, as (like current therapy for Alzheimer’s disease), previous therapy was lousy. 

 

What became apparent to me, was that patients continued to improve ON THE SAME DOSE.   One of the mistakes GPs would make in subsequent years was increasing the dose quickly, since improvement was continuing (on the theory that if a little is good more would be better).  This pushed patients into toxicity (reversible fortunately). 

 

Something similar happens with all the antidepressants we have (except the ketamine derivatives).  You almost never see improvement in the first week or two. 

 

Do I know what tomorrow’s results will be?  Do I have inside information?  No.  Both my wife’s parents had decades long careers at the Securities and Exchange Commission (SEC), and I well know how they regard trading on inside information.

 

So these thoughts are just educated guesses.  If you are trying to decide whether or not to buy the stock, I hope they will be helpful to you.  Full disclosure: I do have a small position in the stock and am anxiously awaiting tomorrow’s results.

Should you buy Cassava Sciences today?

Tomorrow Cassava Sciences will announce the interim results of an open label trial of its Alzheimer drug Sumafilam in 50 patients receiving the drug for 9 months. Should you buy the stock today?

The stock (symbol SAVA) has had a huge run this year starting at 7 and closing yesterday 27 July ’21 at 127.50.

I’ve been interested in the stock for several reasons

l. As a neurologist, I’ve watched patients, family members and friends deteriorate and die, being totally unable to help them.

2. I’ve known one of the principals in the company since she was a teenager in Montana — Lindsay Burns https://luysii.wordpress.com/2021/02/02/montana-girl-does-good-real-good/

3. Sumafilam is thought to work by a completely different mechanism of action than previous approaches (all of which have failed to produce a useful drug)– https://luysii.wordpress.com/2021/03/25/the-science-behind-cassava-sciences-sava/

In fact some of these therapies have actually made Alzheimer’s worse [ Nature Reviews Drug Discovery vol. 18 p. 327 ’19 ]

Tomorrow’s results should move the stock significantly.  If there is no improvement in cognition the stock will plummet.  If there is improvement the stock should soar, at least double again.  Why? Because we have no useful therapy.  Forget Biogen’s drug Aduhelm — the FDA advisory committee resigned in protest after the drug was approved, as the evidence for help was minimal at best.

Of course I’m rooting for the drug as a clinician and as a friend of Lindsay.

There is some evidence that the results tomorrow will show that the drug helps

A prior analysis after six months showed patients taking Cassava’s medication had a 10% improvement on cognition and 29% improvement on an inventory of dementia-related behavior, like delusions and anxiety.

 

The author of the article didn’t realize just how unprecedented these results are.  The numbers of patients (50) and the time (6 months) are long enough to make statistical fluke unlikely.

 

It is even possible that the patients will continue to improve — from the 6 month results, in which case the stock will go bananas.

 

Here’s why.
This isn’t in the books, but there is a precedent for continued improvement on Sumafilam based on my clinical experience with Parkinson’s disease.

 

I was one of the first docs able to prescribe L-DOPA for Parkinsonism in 9/70.  L-DOPA was released in the USA that month, after unconsciounable delay by the FDA.  I’d just left the Air Force and was starting to finish up my neurology residency at the University of Colorado.  The chief (James Austin) called me in and tasked me with setting up the brand new L-DOPA clinic.

 

 
We didn’t know what the drug would do, so we proceeded very cautiously.  Giving a little, watching, waiting, giving a little more, watching, waiting.  Wash rinse repeat.  The results were dramatic, as (like current therapy for Alzheimer’s disease), previous therapy was lousy. 

 

What became apparent to me, was that patients continued to improve ON THE SAME DOSE.   One of the mistakes GPs would make in subsequent years was increasing the dose quickly, since improvement was continuing (on the theory that if a little is good more would be better).  This pushed patients into toxicity (reversible fortunately). 

 

Something similar happens with all the antidepressants we have (except the ketamine derivatives).  You almost never see improvement in the first week or two. 

 

Do I know what tomorrow’s results will be?  Do I have inside information?  No.  Both my wife’s parents had decades long careers at the Securities and Exchange Commission (SEC), and I well know how they regard trading on inside information.

 

So these thoughts are just educated guesses.  If you are trying to decide whether or not to buy the stock, I hope they will be helpful to you.  Full disclosure: I do have a small position in the stock and am anxiously awaiting tomorrow’s results.

Nightmare on Wall Street

I’ve written several posts about Cassava Biosciences (symbol SAVA) and their potential drug for Alzheimer’s (see the end). The recent approval of Biogen’s ineffective (but highly lucrative) therapy Aducanumab for the disease brings forth the following nightmare. At a cost of > $50,000/year and millions of desperate famililes, Biogen will soon be rolling in money. The Cassava drug is orally available and should cost a fraction of that. Even better — it may actually work, although I think serious side effects are likely. Given the sketchy data getting Aducanumab through the FDA, Cassava’s drug represents a real threat to Biogen.

It will be perfectly legal for Biogen to outright buy Cassava and stop development. They will have the money. They won’t be able to do it on the sly, as any position of one company (or individual) in another greater than 5% of the value of the company must be reported to the SEC where it becomes public knowledge.

This from a cousin who is a stock market guru. His wife wasn’t available when I called being next door taking care of a woman with early Alzheimer’s, whose husband had to leave as his father suddenly passed away. She can’t be left alone. Such is the market for Aducanumab.

So will my friend Lindsay and her husband have the moral strength to resist Biogen?

Back in the day when I was in the service in Denver, a very wealthy stockbroker (who had brought the waterPik public) bought up many of beautiful old mansions on the west side of Cheeseman park. He then sold them to people he trusted (such as ourselves), so they wouldn’t be broken up into apartments (which was quite lucrative). I asked why the other people living on Humboldt street didn’t do the same. He said they had so much money they didn’t need character. The folks at Cassava don’t have a hell of a lot of money but hopefully they do have character.

Other posts on Cassava should you be interested are

The science behind Cassava Sciences (SAVA)

The science behind Cassava Sciences (SAVA) — updated 18 April ’23

I certainly hope Cassava Sciences new drug Simufilam for Alzheimer’s disease works for several reasons

l. It represents a new approach to Alzheimer’s not involving getting rid of the plaque which has failed miserably

2. The disease is terrible and I’ve watched it destroy patients, family members and friends

3. I’ve known one of the principals (Lindsay Burns) of Cassava since she was a teenager and success couldn’t happen to a nicer person. For details please see https://luysii.wordpress.com/2021/02/02/montana-girl-does-good-real-good/.

Unfortunately even if Sumifilam works I doubt that it will be widely used because of the side effects (unknown at present) it is very likely to cause.  I certainly hope I’m wrong.

Here is the science behind the drug.  We’ll start with the protein the drug is supposed to affect — filamin A, a very large protein (2,603 amino acids to be exact).  I’ve known about it for years because it crosslinks actin in muscle, and I read everything I could about it, starting back in the day when I ran a muscular dystrophy clinic in Montana.  

Filamin binds actin by its amino terminal domain.  It forms a dimerization domain at its carboxy terminal end.  In between are 23 repeats of 96 amino acids which resemble immunoglobulin — forming a rod 800 Angstroms long.  The dimer forms a V with the actin binding domain at the two tips of the V, making it clear how it could link actin filaments together. 

Immunoglobulins are good at binding things and Lindsay knows of 90 different proteins filamin A binds to.  This is an enormous potential source of trouble.  

As one might imagine, filamin A could have a lot of conformations in addition to the V, and the pictures shown in https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2099194/.

One such altered (from the V) conformation binds to the alpha7 nicotinic cholinergic receptor on the surface of neurons and Toll-Like Receptor 4 (TLR4) inside the cell.

Abeta42, the toxic peptide, has been known for years to bind tightly to the alpha7 nicotinic receptor — they say in the femtoMolar (10^-15 Molar) range, although I have my doubts as to whether such tiny concentration values are meaningful.  Let’s just say the binding is tight. 

The altered conformation of filamin A makes the binding of Abeta to alpha7even tighter. 

In some way, the tight binding causes signaling inside the cell (mechanism unspecified) to hyperphosphorylate the tau protein forming the neurofibrillary tangle, which is more directly correlated with dementia in Alzheimer’s disease than the number of senile plaques. 

Addendum 18 April 2023:  The mechanism was specified a mere 20 years ago.  Here it is: The high affinity aBeta42-alpha7 nicotinic cholinergic receptor binding activates the MAP kinase cascade, ending in activation of the protein kinases ERK2, and JNK1.  Protein kinases catalyze the addition of phosphate to proteins forming an ester with the free hydroxyl groups of serine and/or threonine.  Activating ERK2 and JNK1 allows them to phosphorylate the tau protein leading to the neurofibrillary tangle of  Alzheimer’s disease. 

So what does Sumifilam actually do — it changes the ‘altered’ conformation of filamin A back to normal, decreasing Abeta signaling inside the cell.  

How do they know the conformation of filamin A has changed?  They haven’t done cryoEM or Xray crystallography on the protein.  The only evidence for a change in conformation, is a change in the electrophoretic mobility (which is pretty good evidence, but I’d like to know what conformation is changed to what).

Notice just how radical this proposed mechanism of action actually is.  The nicotinic cholinergic receptor is an ion channel, yet somehow the effect of Sumifilam is on how the channel binds to another protein, rather than how it conducts ions. 

However they have obtained some decent results with the drug in a very carefully done (though small — 13 patients) study in J. Prev Alz. Dis. 2020 (http://dx.doi.org/10.14283/ipad2020.6) and the FDA this year has given the company the go ahead for a larger phase III trial.

Addendum 26 March: The above link didn’t work.  This one should — it’s from Lindsay herself

https://link.springer.com/article/10.14283/jpad.2020.6

Why, despite rooting for the company and Lindsay am I doubtful that the drug will find wide use.  We are altering the conformation of a protein which interacts with at least 90 other proteins (Lindsay Burns, Personal Communication).  It seems inconceivable that there won’t be other effects in the neuron (or elsewhere in the body) due to changes in the interaction with the other 89 proteins filaminA interacts with.  Some of them are likely to be toxic.