Tag Archives: Endoplasmic reticulum

4 Interesting papers

Here are brief summaries of 4 recent very interesting papers, each of which may be the subject of a future post (now that I’m not as worried about the effects of the Wuhan flu on family members over in Hong Kong).  They are likely behind a pay wall unfortunately

l. Watching an endoplasmic reticulum extruded tubule cut a P-body in half. Very significant as we begin to appreciate the phase transitions going on in our cells — for an overview of this see — https://luysii.wordpress.com/2018/12/16/bye-bye-stoichiometry/.

The paper(s) itself [ Science vol. 367 pp. 507 – 508, 537, eaay7108 ’20 ]

2. Watching microglia caress the cell body (soma) of neurons [ Science vol. 367 pp. 510 – 511, 528 – 537 ’20 ].  They’re actually rather creepy, extending processes and feeling up neurons, removing synapses from processes.  They use receptors for ATP and ADP to detect when a neuron is in trouble.  A new cellular specialization is described — Somatic Purinergic Junctions — a combination of mitochondria, reticular membrane structures, vesicle-like membrane structures and clusters of a particular voltage gated potassium channel (Kv2.1)

3. The ubiquitin wars inside a macrophage invaded by TB [ Nature vol. 577 pp. 682 – 688 ’20 ]  Ubiquitin initially was thought to be a tag marking a protein for destruction.  It’s much more complicated than that.  A host E3 ubiquitin ligase (ANAPC2, a core subunit of the anaphase promoting complex/cyclosome) promotes the attachment of lysine #11 linked ubiquitin chains to lysine #76 of the TB protein Rv0222.  In some way this helps Rv022 to suppress the expression of proinflammatory cytokines.

4. FACT (FAcilitates Chromatin Transcription)  is a heterodimer of two proteins which form a heterodimer [ Nature vol. 577 pp. 426 – 431 ’20 ].  If you’ve ever wondered how the monstrously large holoenzyme of RNA polymerase II, manages to work its way around the nucleosome copying one strand, you need to know about FACT, which basically grabs the disclike nucleosome with DNA wrapped around it twice, grabs both H2A-H2B dimers and holds them outside while pol II passes.  You have to wonder which came first the nucleosome or FACT. Neither would be of much use by themselves.  Probably they both grew up together, but it’s hard to envision the intermediate stages.

Are you as smart as the (inanimate) blind watchmaker

Here’s a problem the cell has solved. Can you? Figure out a way to send a protein to two different membranes in the cell (the membrane encoding it { aka the plasma membrane }, and the endoplasmic reticulum) in the proportions you wish.

The proteins must have exactly the same sequence and content of amino acids, ruling out alternative splicing of exons in the mRNA (if this is Greek to you have a look at the following post — https://luysii.wordpress.com/2012/01/09/molecular-biology-survival-guide-for-chemists-v-the-ribosome/ and the others collected under — https://luysii.wordpress.com/category/molecular-biology-survival-guide/).

The following article tells you how the cell does it. Recall that not all of the messenger RNA (mRNA) is translated into protein. The ribosome latches on to the 5′ end of the mRNA,  subsequently moving toward the 3′ end until it finds the initiator codon (AUG which codes for methionine). This means that there is a 5′ untranslated region (5′ UTR). It then continues moving 3′ ward stitching amino acids together.  Similarly after the ribosome reaches the last codon (one of 3 stop codons) there is a 3′ untranslated region (3′ UTR) of the mRNA. The 3′ UTR isn’t left alone but is cleaved and a polyAdenine tail added to it. The 3′ UTR is where most microRNAs bind controlling mRNA stability (hence the amount of protein produced from a given mRNA).

The trick used by the cell is described in [ Nature vol. 522 pp. 363 – 367 ’15 ]. The 3’UTR is alternatively processed producing a variety of short and long 3’UTRs. One such protein where this happens is CD47 — which is found on the surface of most cells where it stops the cell from being eaten by scavenger cells such as macrophages. The long 3′ UTR of CD47 allows efficient cell surface expression, while the short 3′ UTR localizes it to the endoplasmic reticulum.

How could this possibly work? Once the protein is translated by the ribosome, it leaves the ribosome and the mRNA doesn’t it? Not quite.

They say that the long 3′ UTR of CD47 acts as a scaffold to recruit a protein complex which contains HuR (aka ELAVL1), an RNA binding protein and SET to the site of translation. The allows interaction of SET with the newly translated cytoplasmic domains of CD47, resulting in subsequent translocation of CD47 to the plasma membrane via activated RAC1.

The short 3′ UTR of CD47 doesn’t have the sequence binding HuR and SET, so CD47 doesn’t get to the plasma membrane, rather to the endoplasmic reticulum.

The mechanism may be quite general as HuR binds to thousands of mRNAs. The paper gives two more examples of proteins where this happens.

It’s also worth noting that all this exquisite control, does NOT involve covalent bond formation and breakage (e.g. not what we consider classic chemical reactions). Instead it’s the dance of one large molecular object binding to another in other ways. The classic chemist isn’t smiling. The physical chemist is.