Tag Archives: TDP43

A new way to look at ALS (thank God)

It’s always good when a new way to look at a basically untreatable disease comes along.  We’ll know soon if looking at filamin A will be useful for Alzheimer’s disease.  Here’s another:  something we’ve known about for years (polyphosphate) may be important in Amyotrophic Lateral Sclerosis (ALS).   I used riluzole for ALS, but never saw any benefit.  It may have slowed the decline, but riluzole never stopped disease progression.

It is stated that 10% of ALS is familial, but I think this is an overstatement.  Even so mutations in a variety of proteins(superoxide dismutase 1 (SOD1) TDP43, C9orf72) do cause ALS, and studying them has taught us a lot about ALS.  There is plenty of work to do.  In 2016 a mere 160 mutations in the 153 amino acids of SOD1 had been found, but we still don’t know how they cause ALS despite hundreds of papers on the subject.  The proteins have allowed us to make mouse models of ALS, by putting in one or the other of mutated SOD1, TDP43, C9orf72 in motor neurons (or in whole animals)

Some real gumshoe work led to polyphosphate [ Neuron vol. 110 pp. 1603 – 1605 ’22 ].  Obviously in ALS, the motor neurons die, but recent work has shown that motor neurons are killed by neighboring astrocytes (containing any of the 3 the mutant proteins), when they are cultured together.   Normal astrocytes don’t do this.

So a lot of hard work found that it was polyphosphate in the supernatant fluid that was the killer.

So what is polyphosphate?  It’s been known for years, and is found in ALL cells — bacterial, plant, animal.  It also produced abiotically in volcanic exudates and deep sea steam vents.  No one knows what it does, so it has been called a molecular fossil.  Again teleology should inform biologic research (but it doesn’t).  Polyphosphate must be doing something useful or it wouldn’t be present in all living cells.

Chemically, polyphosphate is a chain of HUNDREDS to THOUSANDS of phosphate residues linked by high energy phosphoanhydride bonds.

Like this —

HO – PO2 – OH  + HO -PO2 -OH –>  HO – PO2 – 0 – PO2 – OH + H20

— the – O – in the middle is the phosphoanhydride bond

The authors treated motor neurons in culture with polyphosphate and found that it killed 40% of them.  So what?  Schmidt’s law of pharmacology, says that enough of anything will do anything,  So they looked at the spinal cords of patients dying of ALS and found that polyphosphate levels were higher than in neurologically normal controls.

So it’s open season on polyphosphate. Finding out what it does in normal cells, finding out how it kills motor neurons, finding out if decreasing its levels will help ALS (it does in cultures of motor neurons but that’s a long way from a living patient).  It’s an entirely new angle on an awful disease, with no useful treatment.  There is simply an enormous amount of work to be done.

Watch this space.



We now understand what amyloid actually is

Lately we have received an embarrassment of riches about amyloid and the diseases it causes.  I’ll start with the latest — the structure of TDP amyloid.

I must say it is a pleasure to get back to chemistry and away from the pandemic, however briefly.  So relax and prepare to enjoy some great chemistry and protein structure.

TDP43 (you don’t to know what the acronym stands for) is a protein which binds to RNA (among other things).  It also forms aggregates, and some 50 mutations are known producing FrontoTemporal  Dementia (FTD) and/or Amyotrophic Lateral Dementia (ALS).  I saw a case as a resident (before things were worked out) and knew something was screwy because while ALS is a horrible disease, patients are clear to the end (witness Stephen Hawking) and my patient was clearly dementing.

Mutations in TDP43 occur in 5% of familial ALS.  More to the point cytoplasmic aggregates of TDP43 occur in 95% of sporadic cases of ALS (no mutations), so neurologists have been fascinated with TDP43 for years.

Back before we knew much about the structure of amyloid, it was characterized by the dyes that would bind to it (Congo Red, thioflavin etc.) and birefringence (see below).  None of this is true for the aggregates of TDP43.

Well we now know what the structure of amyloid is.  You simply can’t do better than  Cell vol. 184 pp. 4857 – 4873 ’21 — but it might be behind a paywall.

So here’s the skinny about what amyloid actually is —


It is a significantly long polypeptide chain  flattening  out into a 4.8 Angstrom thick sheet, essentially living in 2 dimensions.  Thousands of sheets then pile on top of each other forming amyloid.  So amyloid is not a particular protein, but a type of conformation a protein can assume (like the alpha helices, beta pleated sheets etc. etc. ).

The structure also explained why planar molecules like Congo Red bind to amyloid (it slips between the sheets).   Or at least that’s what I thought.


Enter Nature vol. 601 pp. 29 – 30, 139 – 143 ’22 showing that some 79 amino acids of the 414 amino acids of TDP43 flatten out into single sheet in the aggregates, with the sheets piling on top of each other.  If that isn’t amyloid, what is?


Where are the beta strands producing birefringence if this is amyloid.  In fact where is the birefringence? (see below). The paper says that there are 10 beta strands in the 79 amino acids, but they are short with only two of them containing more than 3 amino acids (I guess they can see beta strands by measuring backbone angles a la Ramachandran plots).  The high number of glycine mediated turns prevents beta sheets from stacking next to each other precluding the crossBeta  structure (and birefringence).


Why doesn’t Congo Red bind?  My idea about how it binds to other amyloids (slipping between the sheets) clearly is incorrect.


There are all sorts of fascinating points about the amyloid of TDP43.  The filaments derived from patients are stable to heating to 65 C.   The structure of the TDP43 fibrils derived from patients with FTD/ALS are quite different in structure from synthetic filaments made from parts of TDP43, so possibly a lot of work will have to be done again.


Here is some more detail on amyloid structure:


So start with NH – CO – CHR.  NH  CO and C in the structure all lie in the same plane (the H and the side chain of the amino acid < R >  project out of the plane).
Here’s a bit of elaboration for those of you whose organic chemistry is a distant memory.  The carbon in the carbonyl bond (CO) has 3 bonding orbitals in one plane 120 degrees apart, with the 4th orbital perpendicular to the plane — this is called sp2 hybridization.  The nitrogen can also be hybridized to sp2.  This lets the pair of electrons above the plane roam around moving toward the carbon.  Why is this good?  Because any time you let electrons roam around you increase their entropy (S) and anything increasing entropy lowers their free energy (F)which is given by the formula F = H – TS where H is enthalpy (a measure of bond strength, and T is the absolute temperature in Kelvin.


So N and CO are in one plane, and so are the bonds from  N and C to the adacent atoms (C in both cases).


You can fit the plane atoms into a  rectangle 4.8 Angstroms high.  Well that’s one 2 dimensional rectangle, but the peptide bond between NH and CO in adjacent rectangles allows you to tack NH – CO – C s together while keeping them in a 3 dimensional parallelopiped 4.8 Angstroms high


Notice that in the rectangle the NH and CO bonds are projecting toward the top and bottom of the rectangle, which means that in each plane  NH – CO – CHR s, the NH and CO are pointing out of the 2 dimensional plane (and in opposite directions to boot). This is unlike protein structure in which the backbone NHs and COs hydrogen bond to each other.  There is nothing in this structure for them to bond to


What they do is hydrogen bond to another 3 dimensional parallelopiped (call it a sheet, but keep in mind that this is NOT the beta sheet you know about from the 3 dimensional structures of proteins we’ve had for years).
So thousands of sheets stacked together form the amyloid fibril.


Where does the 9 Angstrom reflection of cross beta (and birefringence) come from?  Consider the  [ NH – CHR – CO ]  backbone as it lies in the 4.8  thick plane (Having studied proteins structure since entering med school in ’62, I never thought such a thing would even be possible ! ).  It curves around like a snake lying flat.  Where are the side chains?  They are in the 4.8 thick plane, separating parts of the meandering backbone from each other — by an average of 9 Angstroms.
Here is an excellent picture of the Alzheimer culprit — the aBeta42 peptide as it forms the amyloid of the senile plaque
You can see the meandering backbone and the side chains keeping the backbone apart.

Then Nature [ vol. 598,  pp. 359 – 363 ’21] blows the field wide open, finding 19 different conformations of tau in clinically distinct diseases. Each clinical disease appears to be associated with a distinct polymorphism.  This is also true for the polymorphisms of alpha-synuclein, with distinct conformations being seen in each of Parkinsonism, multiple system atrophy and Lewy body dementia.

In none of the above diseases is there a mutation (change in amino acid sequence) in the protein.

Henry J. Heinz claimed to have 57 varieties of pickles in 1896, but Cell [ vol. 184 pp. 4857 – 4873 ’21  ] Page 4862 claims that 24 amyloid polymorphs of alpha-synuclein have been found and structurally characterized.  Recall that alpha-synuclein amyloid is the principal component of the Lewy body of Parkinsonism  and Lewy Body disese

How did they get the 24 different conformations?  They incubated the protein under different conditions (e.g. different salt concentrations, different alpha-synuclein concentrations, different salts).

Why is this incredibly good news? 

Because it moves us past amyloid itself, to the conditions which cause amyloid to form.  Certainly, removing amyloid or attacking it hasn’t resulted in any clinical benefit for the Alzheimer patient despite billions being spent by Big Pharma to do so.

We will start to study the ‘root causes’ of amyloid formation.   The amino acid sequence of each protein is identical despite the different conformations of the chain in the amyloid. Clearly the causes must be different for each of the different polymorphs of the protein.  This just has to be true.

TDP43 and the anisosome

Neurologists have been interested in TDP43 (Tar Dna binding Protein of 43 kiloDaltons) for a long time. Mutants cause some cases of ALS (Amyotrophic Lateral Sclerosis — Lou Gehrig disease) and FTD (FrontoTemporal Dementia).  Some 50 different mutations in the protein have been found in cases of these two diseases.  Intracellular inclusions containing TDP are found in > 90% of sporadic ALS (no mutations) and 45% of FTD.

TDP43 contains 414 amino acids (as you might expect for a protein with a 43 kiloDalton mass).  There is an amino terminal ubiquitinlike fold, two RNA Recognition Motifs (RRMs) followed by a glycine rich low complexity sequence prion-like domain at the other (carboxy) end.  The disease causing mutations are found in the low complexity sequence. 

A  phase separated structure (the anisosome) never seen before involves  mutant TDP43 [ Science vol. 371 pp. 585, abb4309 pp. 1 –> 15 ’21 ].  It is a phase separated mass with liquid spherical shells and liquid cores.  The shells showed birefringence — evidence of a liquid crystal.  The cores show the HSP70 chaperone bound to TDP43 (which wasn’t binding RNA).

ATP is required to maintain the chaperone activity of HSP70. When ATP levels are reduced, the anisosome is converted into the protein aggregates seen in ALS and FTD.  So the anisosome is a protective mechanism. 

Biology is clearly leading chemistry around by the nose.  No chemist would ever have predicted something like this, or received a grant to mix all this stuff in a test tube not even thinking about stoichiometry and see what happened.  For more details on phase separation please see an old post — https://luysii.wordpress.com/2020/12/20/neuroscience-can-no-longer-ignore-phase-separation/

Here’s some stuff from that post to whet your appetite

Advances in cellular biology have largely come from chemistry.  Think DNA and protein structure, enzyme analysis.  However, cell biology is now beginning to return the favor and instruct chemistry by giving it new objects to study. Think phase transitions in the cell, liquid liquid phase separation, liquid droplets, and many other names (the field is in flux) as chemists begin to explore them.  Unlike most chemical objects, they are big, or they wouldn’t have been visible microscopically, so they contain many, many more molecules than chemists are used to dealing with.

These objects do not have any sort of definite stiochiometry and are made of RNA and the proteins which bind them (and sometimes DNA).  They go by any number of names (processing bodies, stress granules, nuclear speckles, Cajal bodies, Promyelocytic leukemia bodies, germline P granules.  Recent work has shown that DNA may be compacted similarly using the linker histone [ PNAS vol.  115 pp.11964 – 11969 ’18 ]

The objects are defined essentially by looking at them.  By golly they look like liquid drops, and they fuse and separate just like drops of water.  Once this is done they are analyzed chemically to see what’s in them.  I don’t think theory can predict them now, and they were never predicted a priori as far as I know.

No chemist in their right mind would have made them to study.  For one thing they contain tens to hundreds of different molecules.  Imagine trying to get a grant to see what would happen if you threw that many different RNAs and proteins together in varying concentrations.  Physicists have worked for years on phase transitions (but usually with a single molecule — think water).  So have chemists — think crystallization.

Proteins move in and out of these bodies in seconds.  Proteins found in them do have low complexity of amino acids (mostly made of only a few of the 20), and unlike enzymes, their sequences are intrinsically disordered, so forget the key and lock and induced fit concepts for enzymes.

Are they a new form of matter?  Is there any limit to how big they can be?  Are the pathologic precipitates of neurologic disease (neurofibrillary tangles, senile plaques, Lewy bodies) similar.  There certainly are plenty of distinct proteins in the senile plaque, but they don’t look like liquid droplets.

It’s a fascinating field to study.  Although made of organic molecules, there seems to be little for the organic chemist to say, since the interactions aren’t covalent.  Time for physical chemists and polymer chemists to step up to the plate.