Category Archives: Uncategorized

How art and science differ

The difference between art and science was really brought home to me on a visit to a museum on our recent trip to Venice.  I’d never heard about the Memphis Group of artists before — https://en.wikipedia.org/wiki/Memphis_Group.  They mostly made wacky looking furniture, as a revolt against the austere Bauhaus style –https://en.wikipedia.org/wiki/Bauhaus.   Back in the day, people living in the Harvard Law dorms Gropius (one of the Bauhaus founders) designed hated them as unlivable.  Similarly one can regard Pop art as a revolt against abstract expressionism, impressionism as a revolt against classicism, etc. etc.   The very notion of progress and building on the past is antithetical.

Science also produces a succession of theories, but they build on previously successful theories extending and incorporating them.  Special and general relativity subsume Newtonian mechanics, Maxwell’s laws merge electricity and magnetism.  Current molecular biology extends the classic dogma of the 60s and 70s — DNA makes RNA makes protein.  None of the older theories are rejected just improved.

So progress is inherent to the scientific enterprise, and is unheard of in the arts.  In one sense the arts are closer to the creative destruction of capitalism than its practitioners would like to admit.

I’ll be back to writing more scientific posts shortly, but here’s a question to be answered in a later post.

What extremely famous artist, spent more of his life as a mechanical and military engineer than as an artist?

 

Advertisements

Will acyclovir be a treatment for Alzheimer’s ?

When I was a first year medical student my aunt died of probable acute herpes simplex encephalitis at Columbia University Hospital in New York City.  That was 55 years ago and her daughters (teenagers at the time) still bear the scars.  Later, as a neurologist I treated it, and after 1977, when acyclovir, which effectively treats herpes encephalitis came out, I would always wonder if acyclovir would have saved her.

The drug is simplicity itself.  It’s just guanosine (https://en.wikipedia.org/wiki/Guanosine) with two of the carbons of the ribose missing.  Herpesviruses have an enzyme which forms the triphosphate incorporating it into its DNA killing the virus.  Well, actually we have the same enzyme, but the virus’s enzyme is 3,000,000 times more efficient than ours, so acyclovir is relatively nontoxic to us.  People with compromised renal function shouldn’t take it.

What does this have to do with Alzheimer’s disease?  The senile plaque of Alzheimers is mostly the aBeta peptide (39 – 43 amino acids) from the amyloid precursor protein (APP).  This has been known for years, and my notes on various papers about over the years contain 150,000 characters or so.

Even so, there’s a lot we don’t understand about APP and the abeta peptide — e.g. what are they doing for us?  You can knockout the APP gene in mice and they appear normal and fertile.  The paper cited below notes that APP has been present in various species for the past 400,000,000 years of evolutionary time remaining pretty much unchanged throughout, so it is probably doing something useful

A recent paper in Neuron (vol. 99 pp. 56 – 63 ’18) noted that aBeta is actually an antimicrobial peptide.  When exposed to herpes simplex it binds to glycoproteins on its surface and then  oligomerizes forming amyloid (just like in the senile plaque) trapping the virus.  Abeta will protect mice against herpes simplex 1 (HSV1) encephalitis.  Even more important — infection of the mice with HSV1 induced abeta production in their brains.

People have been claiming infections as the cause of just about every neurodegeneration since I’ve been a neurologist, and papers have been written about HSV1 and Alzheimer’s.

Which brings me to the second paper (ibid. pp. 64 – 82) that looked for the viral RNAs and DNAs in over 900 or so brains, some with and some without Alzheimer’s.  They didn’t find HSV but they found two other herpes viruses known to infect man (HHV6, HHV7 — which cause roseola infantum).  Humans are subject to infection with 8 different herpes virus (Epstein Barr — mononucleosis, H. Zoster — chickenpox etc. etc.).   Just about everyone of us has herpes virus in latent form in the trigeminal ganglion — which gets sensory information from our faces.

So could some sort of indolent herpesvirus infection be triggering abeta peptide production as a defense with the senile plaque as a byproduct?  That being the case, given the minimal benefits of any therapy we have for Alzheimer’s disease so far, why not try acyclovir (Zovirax) on Alzheimer’s.

I find it remarkable that neither paper mentioned this possibility, or even discussed any of the antivirals active against herpesviruses.

A pile of spent bullets — take II

I can tell you after being in neurology for 50 years that back in the day every microscopic inclusion found in neurologic disease was thought to be causative.  This was certainly true for the senile plaque of Alzheimer’s disease and the Lewy body of Parkinsonism.  Interestingly, the protein inclusions in ALS weren’t noticed for decades.

However there are 3 possible explanations for any microscopic change seen in any disease.  The first is that they are causative (the initial assumption).  The second is that they are a pile of spent bullets, which the neuron uses to defend itself against the real killer.  The third is they are tombstones, the final emanations of a dying cell, a marker for the cause of death rather than the cause itself.

An earlier post concerned work that implied that the visible aggregates of alpha-synuclein in Parkinson’s disease were protective rather than destructive — https://luysii.wordpress.com/2018/01/07/are-the-inclusions-found-in-neurologic-disease-attempts-at-defense-rather-then-the-cause/.

Comes now Proc. Natl. Acad. Sci. vol. 115 pp. 4661 – 4665 ’18 on Superoxide Dismutase 1 (SOD1) and ALS. Familial ALS is fortunately less common than the sporadic form (under 10% in my experience).  Mutations in SOD1 are found in the familial form.  The protein contains 153 amino acids, and as 6/16 160 different mutations in SOD1 have been found.  Since each codon can contain only 3 mutations from the wild type, this implies that, at a minimum,  53/153 codons of the protein have been mutated causing the disease.  Sadly, there is no general agreement on what the mutations actually do — impair SOD1 function, produce a new SOD1 function, cause SOD1 to bind to something else modifying that function etc. etc.  A search on Google Scholar for SOD1 and ALS produced 28,000 hits.

SOD1 exists as a soluble trimer of proteins or the fibrillar aggregate.   Knowing the structure of the trimer, the authors produced mutants which stabilized the trimer (Glycine 147 –> Proline) making aggregate formation less likely and two mutations (Asparagine 53 –> Isoleucine, and Aspartic acid 101 –> Isoleucine) which destabilized the trimer making aggregate formation more likely.  Then they threw the various mutant proteins at neuroblastoma cells and looked for toxicity.

The trimer stabilizing mutant  (Glycine 147 –> Proline) was toxic and the destabilizing mutants  (Asparagine 53 –> Isoleucine, and Aspartic acid 101 –> Isoleucine)  actually improved survival of the cells.  The trimer stabilizing mutant was actually more toxic to the cells than two naturally occurring SOD1 mutants which cause ALS in people (Alanine 4 –> Valine, Glycine 93 –> Alanine).  Clearly with these two something steric is going on.

So, in this experimental system at least, the aggregate is protective and what you can’t see (microscopically) is what kills cells.

Dynamic allostery

It behooves drug chemists to know as much as they can about protein allostery, since so many of their drugs attempt to manipulate it.  An earlier post discussed dynamic allostery which is essentially change in ligand binding affinity without structural change in the protein binding the ligand.  A new paper challenges the concept.

First here’s the old post, and then the new stuff

Remember entropy? — Take II

Organic chemists have a far better intuitive feel for entropy than most chemists. Condensations such as the Diels Alder reaction decrease it, as does ring closure. However, when you get to small ligands binding proteins, everything seems to be about enthalpy. Although binding energy is always talked about, mentally it appears to be enthalpy (H) rather than Gibbs free energy (F).

A recent fascinating editorial and paper [ Proc. Natl. Acad. Sci. vol. 114 pp. 4278 – 4280, 4424 – 4429 ’17 ]shows how the evolution has used entropy to determine when a protein (CzrA) binds to DNA and when it doesn’t. As usual, advances in technology permit us to see this (e.g. multidimensional heteronuclear nuclear magnetic resonance). This allows us to determine the motion of side chains (methyl groups), backbones etc. etc. When CzrA binds to DNA methyl side chains on the protein move more, increasing entropy (deltaS) as well. We all know the Gibbs free energy of reaction (deltaF) isn’t just enthalpy (deltaH) but deltaH – TdeltaS, so an increase in deltaS pushes deltaF lower meaning the reaction proceeds in that direction.

Binding of Zinc redistributes these side chain motion so that entropy decreases, and the protein moves off DNA. The authors call this dynamics driven allostery. The fascinating thing, is that this may happen without any conformational change of CzrA.

I’m not sure that molecular dynamics simulations are good enough to pick this up. Fortunately newer NMR techniques can measure it. Just another complication for the hapless drug chemist thinking about protein ligand interactions.

A recent paper [ Proc. Natl. Acad. Sci. vol. 114 pp. 6563  – 6568 ’17 ] went into more detail about measuring side chain motions  as a surrogate for conformational entropy.  It can now be measured by NMR.  They define complete restriction of  the methyl group symmetry axis as 1, and complete disorder, and state that ‘a variety of models’ imply that the value is LINEARLY related to conformational entropy making it an ‘entropy meter’.  They state that measurement of fast internal side chain motion is largely restricted to the methyl group — this makes me worry that other side chains (which they can’t measure) are moving as well and contributing to entropy.

The authors studied some 28 protein/ligand systems, and found that the contribution of conformational entropy to ligand binding can be favorable, negligible or unfavorable.

What is bothersome to the authors (and to me) is that there were no obvious structural correlates between the degree of conformation entropy and protein structure.  So it’s something you measure not something you predict, making life even more difficult for the computational chemist studying protein ligand interactions.

Now the new stuff [ Proc. Natl. Acad. Sci. vol. 114 pp. 7480 – 7482, E5825 – E5834 ’17 ].  It’s worth considering what ‘no structural change’ means.  Proteins are moving all the time.  Bonds are vibrating at rates up to 10^15 times a second.  Methyl groups are rotating, hydrogen bonds are being made and broken.  I think we can assume that no structural change means no change in the protein backbone.

The work studied a protein of interest to neurological function, the PDZ3 domain — found on the receiving side of a synapse (post-synaptic side).  Ligand binding produced no change in the backbone, but there were significant changes in the distribution of electrons — which the authors describe as an enthalpic rather than an entropic effect.  Hydrogen bonds and salt bridges changed.  Certainly any change in the charge distribution would affect the pKa’s of acids and bases. The changes in charge distribution the ligand would see due to hydrogen ionization from acids and binding to bases would certainly hange ligand binding — even forgetting van der Waals effects.

How the brain really works (maybe)

Stare at the picture just below long and hard. It’s where the brain probably does its calculation — no, not the neuron in the center. No, not the astrocyte just above. Enlarge the picture many times. It’s all those tiny little circles and ellipses you see around the apical dendrite. They all represent nerve and glial processes. A few ellipses have very dark borders — this is myelin (which insulates them allowing them to conduct nerve impulses faster, and which also insulates them from being affected by the goings on of nerve processes next to them). Note that most of the nerve processes do NOT have myelin around them.

Now look at the bar at the lower right in the picture which tells you the magnification. 5 um is 5 microns or 50,000 Angstroms or roughly 10 times the wavelength of visible light (4,000 – 8,000 Angstroms). Look at the picture again and notice just how closely the little circles and ellipses are applied to each other (certainly closer than 1/10 of the bar). This is exactly why there was significant debate between two of the founders of neuroHistology — Camillo Golgi and Ramon Santiago y Cajal.

Unlike every other tissue in the body the brain is so tightly packed that it is impossible to see the cells that make it up with the usual stains used by light microscopists. People saw nuclei all right but they thought the brain was a mass of tissue with nuclei embedded in it (like a slime mold). It wasn’t until the late 1800′s that Camillo Golgi developed a stain which would now and then outline a neuron with all its processes. Another anatomist (Ramon Santiago y Cajal) used Golgi’s technique and argued with Golgi that yes the brain was made of cells. Fascinating that Golgi, the man responsible for showing nerve cells, didn’t buy it. This was a very hot issue at the time, and the two received a joint Nobel prize in 1906 (only 5 years after the prizes began).

The paper discussed below gives a possible reason why the brain is built like this — e.g. it’s how it works !!

Pictures are impressive, but could it be all artifact? To see something with an electron microscope (which this picture is) you really have to process the tissue to a fare-thee-well. One example from way back in the day when I started medical school (1962). Electron microscopy was just coming in, and the first thing we were supposed to see was something called the unit membrane surrounding each cell –two dark lines surrounding a light line, the whole mess being about 60 – 80 Angstroms thick. The dark lines were held to be proteins and the light line was supposed to be lipid. Fresh off 2 years of grad school in chemistry, I tried to figure out just what the chemical treatments used to put tissue in a form suitable for electron microscopy would do to proteins and lipids. It was impossible, but I came away impressed with just how vigorous and traumatic what the microscopists were doing actually was.

To make a long story short — the unit membrane was an artifact of fixation. We now know that the cell membrane has a thickness half that of the unit membrane, with all sorts of proteins going through the lipid.

This is something to keep in mind, for you to avoid being snowed by such pictures. Clinical neurologists and neurosurgeons know quite well that a brain lacking oxygen and glucose swells (a huge clinical problem), and dead brain is exactly that.

Even with all these caveats about electron microscopy of the brain, I think the picture above is pretty close to reality. In favor of tight packing is the following work (along with the staining work of over a century ago). [ Proc. Natl. Acad. Sci. vol. 103 pp. 5567 – 5572 ’06 ] injected spheres of different sizes (quantum dots actually) into the rat cerebral cortex, and watched how far they got from the site of injection. Objects ‘as large as’ 350 Angstroms were able to diffuse freely. This was larger than the width seen on electron microscopy (180 Angstroms) but still quite small and too small to be ‘seen’ with visible light.

What’s the point of all this? Simply that the neuropil of the cerebral cortex (all the stuff in the picture which isn’t the cell body of the neuron or the astrocyte) could be where the real computations of the cerebral cortex actually take place. In my opinion, ‘could be’ should be ‘is’ in the previous sentence.

Why? Because of the work described in a previous post — which is repeated in toto below the line of ****

Briefly, the authors of that paper claim to be able to look at the electrical activity of these small processes in the neuropil. How small? A diameter of 5 microns or less. This had never been done before. It was a tremendous technical achievement to do this in a living animal. What they found was that the frequency of spikes in these processes (likely dendrites) during sleep was 7 times greater than the frequency of spikes recorded next to the cell body (soma) which had been done many times before. During wakefulness, the frequency of spikes in the neuropil was 10 fold greater.

I’ve always found it remarkable that most neurons in the cerebral cortex aren’t firing all that rapidly (a few spikes per second — Science vol. 304 pp. 523 – 524, 559 – 563 ’04 ). Neurons (particularly sensory neurons) can fire a lot faster than that — ‘up to’ 500/second.

Perhaps this work explains why — the real calculations are being done in the neuropil by the dendrites.

Even more remarkably, it is possible that the processes of the neuropil are influencing each other without synapses between them because they are so closely packed. The membrane potential shifts the authors measured were much larger than the spikes in the dendrites. So the real computations being performed by the brain might not involve synapses at all ! This would be an explanation of why brain cells and their processes are so squeezed together. So they can talk to each other. No other organ in the body is like this throughout.

This post is already long enough, but the implications are worth exploring further. I’ve written about wiring diagrams of the brain, and how it is at least possible that they wouldn’t tell you how the brain worked — https://luysii.wordpress.com/2011/04/10/would-a-wiring-diagram-of-the-brain-help-you-understand-it/.

There is another possible reason that the wiring diagram wouldn’t be enough to give you an understanding. Here is an imperfect analogy. Suppose you had a complete map of every road and street in the USA, along with the address of every house, building and structure in it. In addition you could also measure the paths of all the vehicles on the roads for one day. Would this tell you how the USA worked? It would tell you nothing about what was going on inside the structures, or how it influenced traffic on the roads.

The paper below is seminal, because for the first time, it allows us to see what brain neurons are doing in all their parts — not just the cell body or the axon (which is all we’ve been able to look at before).

If these speculations are true, the brain is a much more powerful parallel processor than anything we are able to build presently (and possibly in the future). Each pyramidal neuron in the cortex would then be a microprocessor locally influencing all those in its vicinity — and in a cubic millimeter of the cerebral cortex (1,000 x 1,000 x 1,000 microns) there are 20,000 – 100,000 neurons (Science vol. 304 pp. 523 – 524, 559 – 563 ’04).

Fascinating stuff — stay tuned
*****

A staggeringly important paper (if true)

Our conception of how our brain does what it does has just been turned upside down, inside out and from the middle to each end — if the following paper holds up [ Science vol. 355 pp. 1281 eaaj1497 1 –> 10 ’17 ] The authors claim to be able to measure electrical activity in dendrites in a living, behaving animal for days at a time. Dendrites are about the size of the smallest electrodes we have, so impaling them destroys them. The technical details of what they did are crucial, as much of what they report may be artifact due to injury produced by the way they acquired their data.

First a picture of a pyramidal neuron of the cerebral cortex — https://en.wikipedia.org/wiki/Pyramidal_cell — the cell body is only 20 microns in diameter (the giant pyramidal neurons giving rise to the corticospinal tract are much larger with diameters of 100 microns). Look at the picture in the article. If the cell body is (soma) 20 microns the dendrites arising from it (particularly the apical dendrite) are at most 5 microns thick.

Here’s what they did. A tetrode is a bundle of 4 very fine electrodes. Bundle diameter is only 30 – 40 microns with a 5 micron gap between the tips. This allows an intact dendrite to be caught in the gap. The authors note that chronically implanted tetrodes produce an immune response, in which glial cells proliferate and wall off the tetrode, shielding it from the extracellular medium by forming a high impedance sheath. This allows the tetrode to measure the electrical activity of a dendrite caught between the 4 tips (and hopefully little else).

How physiologic is this activity? Remember that epilepsy developing after head trauma is thought to be due to abnormal electrical activity due to glial scars, and a glial scar is exactly what is found around the tetrode. So a lot more work needs to be done replicating this, and studying similar events in neuronal culture (without glia present).

Well those are the caveats. What did they find? The work involved 9 rats and 22 individually adjustable tetrodes. They found that spikes in the dendrites were quite different than the spikes found by a tetrode next to the pyramidal cell body. The dendritic spikes were larger (570 -2,100 microVolts) vs. 80 microVolts recorded extracellularly for spikes arising at the soma. Of course when the soma is impaled by an electrode you get a much larger spike.

More importantly, the dendritic spike rates were 5 times greater than the somatic spike rates during slow wave sleep and 10 times greater during exploration when awake. The authors call these dendritic action potentials (DAPs). Their amplitude was always positive.

They were also able to measure how the membrane potential of the dendrite fluctuated. The membrane potential fluctuations were always larger than the dendritic spikes themselves (by 7 fold). The size of the flucuations correlated with DAP magnitude and rate.

So all the neuronal spikes and axonal action potentials we’ve been measuring over the years (because it was all we could measure), may be irrelevant to what the brain is really doing. Maybe the real computation is occuring within dendrites.

Now we know we can put an electrode in the brain outside of any neuron and record something called a local field potential — which is held to be a weighted sum of transmembrane currents due to synaptic and dendritic activity and arises within 250 microns of the electrode (and probably closer than that).

So fluctuating potentials are out there in the substance of the brain, outside any neuronal structure. Is it possible that the changes in membrane potential in dendrites are felt by other dendrites and if so is this where the brain’s computations are really taking place? Could synapses be irrelevant to this picture, and each pyramidal neuron not be a transistor but a complex analog CPU? Heady stuff. It certainly means goodbye to the McCullouch Pitts model — https://en.wikipedia.org/wiki/Artificial_neuron.

No posts for a while

Off to Manila for a wedding, and Hong Kong to see a new grandson — will be back mid-February

For a picture see — https://luysii.wordpress.com/2016/12/18/noel/

Noel

Madonna and Child

marenmonty

What is ICP27 trying to tell us? One of you could get a PhD if you figure it out !

It wouldn’t be the first time a viral protein led us to an important cellular mechanism. Consider what the polio virus taught us about the translation of mRNA into protein. It cleaves two components of eIF-4F (eukaryotic Initiation (of ribosome translation of mRNA into protein) Factor 4F totally shutting down synthesis of mRNAs with a cap on their 5′ end (which is most of them). Poliovirus proteins don’t have these caps so their proteins continue to be made.

Well this brings us to ICP27 (Infected Cell Protein 27) a product of the Herpes Simplex virus. You can read all about it in [ Proc. Natl. Acad. Sci. vol. 113 pp. 12256 – 12261 ’16 ]. ICP27 is essential for herpes virus infection. This work shows that it inhibits intron splicing (but in under 1% of cellular genes) and also promotes the use of alternative 5′ splice sites.

It also induces the expression of pre-mRNAS prematurely cleaved and polyAdenylated from cryptic polyAdenylation signals located in intron 1 or intron 2 of an amazing 1% of all cellular genes. These prematurely cleaved and polyAdenylated mRNA sometimes contain novel open reading frames (ORFs). They are typically intronless (they should be) and under 2 kiloBases long. They are expressed early during viral infection and efficiently exported to cytoplasm. The ICP27 targeted genes are GC rich (as are all Herpes simplex genes), contain cytosine rich sequences near the 5′ splice site.

The paper also showed that optimization of splice site sequences, or mutation of nearby cytosines eliminated ICP27 mediated splicing inhibition. Introduction of cytosine rich sequences to an ICP27 INsensitive splicing reporter conferred susceptibility to ICP27.

How is this going to help you get a PhD? Ask yourself. What are cryptic polyAdenylation signals doing in the first two introns in so many genes? It seems obvious (to me) that as well as the virus the cell is using them for some purpose. It isn’t hard to mutate something to the signal for polyadenylation AAUAAA. Interestingly cleavage doesn’t occur here, but 30 nucleotides or so downstream. The sequence occurs every 4^6 == 4096 nucleotides (if they’re random). I’m not sure what the total length of introns #1 and #2 are of our 20,000 or so protein coding genes, but someone should be able to find out and see if 200 occurrences of this sequence is more than would be expected by chance.

The plot thickens when the paper notes that “Over 200 genes are affected by ICP27. Over 30 (including PML, STING, TRAF6, PPP6C, MAP3K7, FBXw11, IFNAR2, NKFB1, RELA and CREBP are related to the immune pathway). Do you think the cell doesn’t use this pathway as well?

What about the existence of other viral (and cellular) proteins doing the same sort of thing (but on different introns perhaps). What are those novel open reading frames in the alternatively spliced mRNAs doing?

Fascinating stuff. Time to get busy if you’re an enterprising grad student, or young faculty member.

Vacation — no posts for a while

Off to Maine (and perhaps Prince Edward Island) and perhaps to see a dying friend (that’s what happens when you reach my age — 78 ). I’ve found that the best way to get back in the swing of things on return is just start with the latest journals, skipping what you missed. Trying to double up on your reading when you get back is unpleasant and makes you wish you never went away. If you missed something important, eventually you will hear about it.

So I stopped reading 26 August, and next evening bumped into a friend who wanted to discuss something in that day’s Science magazine.

Leave a comment on this post, if there’s anything you’d like to hear about.

The plural of anecdote is NOT data (in medicine at least)

The previous post (https://luysii.wordpress.com/2016/08/22/the-plural-of-anecdote-is-data/) showed that collecting a bunch of small studies (anecdotes) was extremely helpful in seeing the larger picture.

In medicine exactly the opposite occurs. The only way to find out if something works is to do a controlled study. [ Science vol. 297 p 325 ’02 ] There were over 50 observational studies showing benefits for hormone replacement in menopausal women.. Observational studies are basically anecdotes. During the planning study for the Women’s Health Initiative (WHI), some argued that it was unethical to deny some women hormones and give them a placebo. The reason HERS (Heart and Estrogen/Progesterone Replacement Study) was even done was that Wyeth couldn’t get the FDA to approve hormone replacement therapy as a treatment to prevent cardiovascular disease, so they funded HERS to prove their case. Most readers of this have probably read all sorts of bitching about the slowness of the FDA in approving drugs but in this case they did the female populace a huge favor.

As you probably know, the results of hormone replacement in both studies were a disaster (the HERS trial was stopped at 5.2 years after because of increased breast cancer in the treated group). There was also an increased risk of coronary heart disease by 30%, stroke by 41%. At least hip fracture was reduced. Fortunately, even though these were bad outcomes, they were infrequent,(but more frequent in the treated group).

These weren’t lab animals, but someone’s wife and/or mother.

How could they have been so far off? Before all this started, estrogen users were different from nonUsers in several respects — first they were doing something about their health, and clearly had more medical supervision. In addition they were better educated, smoked less and of a higher social class, all of which tend to diminish morbidity and mortality.

Something very similar happened in my field of neurology (not that vascular disease doesn’t severely impact the nervous system). There was a very logical operation to improve cerebral circulation — the pulse just in front of your ear is the superficial temporal artery, a branch of the common carotid after it splits in the internal carotid which goes into the skull and supplies blood to the brain, and the external carotid. If the internal carotid is blocked and the common carotid artery is open, then open the skull and hook (anastomose) the superficial temporal artery to a vessel on the surface of the brain, bypassing the blockage. If you want to know how it is done see — http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1150876/.

There was all sorts of anecdotal evidence of miraculous recovery from stroke. The neurosurgeons and vascular surgeons mounted a wonderful controlled study of the surgery even though many thought it was unnecessary — so 1377 patients were prospectively randomized to have the surgery or medical management. The surgery wasn’t better than medical management N Engl J Med 1985; 313:1191-1200November 7, 1985DOI: 10.1056/NEJM198511073131904, so the procedure was abandoned.