Tag Archives: CryoEM

Antibodies without antibodies

If you knew exactly how an important class of antibodies interacted with its target, could you design a (relatively) small molecule to act the same way.  These people did, and the work has very exciting implications for infectious disease [ Science vol. 358 pp. 450 – 451, 496 – 502 ’17 ].

The influenza virus is a very slippery target.  Its genome is made of RNA, and copying it is quite error prone, so that mutants are formed all the time.  That’s why the vaccines of yesteryear are useless today.   However there are things called broadly neutralizing antibodies which work against many strains of the virus.  It attacks a vulnerable site on the hemagglutinin protein (HA) of the virus.  It is in the stem of the virus, and binding of the antibody here prevents the conformational change required for the virus to escape the endosome, a fact interesting in itself in that it implies that it only works after the virus enters the cell, although the authors do not explicitly state this.

Study of one broadly neutralizing antibody showed that binding to the site was mediated by a single hypervariable loop.  So the authors worked with a cyclic peptide mimicking the loop.  This has several advantages, in particular the fact that the entropic work of forcing a floppy protein chain into the binding conformation is already done before the peptide meets its target.

The final cyclic peptide contained 11 amino acids, of which 5 weren’t natural. It neutralized pandemic H1 and avaian H5 influenza A strains at nanoMolar concentration.

It’s important that crystal structures of the broadly neutralizing antibody binding to HA were available — this requires atomic level resolution.  I’m not sure cryoEM is there yet.


Abeta42 at last

It’s easy to see why cryoEM got the latest chemistry Nobel.  It is telling us so much.  Particularly fascinating to me as a retired neurologist is the structure of the Abeta42 fibril reported in last Friday’s Science (vol. 358 pp. 116 – 119 ’17).  

Caveats first.  The materials were prepared using an aqueous solution at low pH containing an organic cosolvent — so how physiologic could the structure actually be?  It probably is physiologic as the neurotoxicity of the fibrils to neurons in culture was the same as fibrils grown at neutral pH.  This still isn’t the same as fibrils grown in the messy concentrated chemical soup known as the cytoplasm.  Tending to confirm their findings is the fact that NMR and Xray diffraction on the crystals produced the same result.

The fibrils were unbranched and microns long (implying at least 2,000 layers of the beta sheets to be described).  The beta sheets stack in parallel and in register giving the classic crossBeta sheet structure.  They were made of two protofilaments winding around each other.  Each protofilament contains all 42 amino acids of Abeta42 and all of them form a completely flat beta sheet structure.

Feast your eyes on figure 2 p. 117.  In addition to showing the two beta sheets of the two protofilaments, it shows how they bind to each other.  Aspartic acid #1 of one sheet binds to lysine #28 of the other.  Otherwise the interface is quite hydrophobic.  Alanine2 of one sheet binds to alanine42 of the other, valine39 of one sheet binds to valine 39 of the other.  Most importantly isoLeucine 41 of one sheet binds to glycine38 of the other.

This is important since the difference between the less toxic Abeta40 and the toxic Abeta 42 are two hydrophobic amino acids Isoleucine 41 and Alanine 42.  This makes for a tighter, longer, more hydrophobic interface between the protofilaments stabilizing them.

That’s just a guess.  I can’t wait for work on Abeta40 to be reported at this resolution.

A few other points.  The beta sheet of each protomer is quite planar, but the planes of the two protomers are tilted by 10 degrees accounting for the helicity of the fibril. The fibril is a rhombus whose longest edge is about 70 Angstroms.

Even better the structure explains a mutation which is protective against Alzheimer’s.  This remains the strongest evidence (to me at least) that Abeta peptides are significantly involved in Alzheimer’s disease, therapeutic failures based on this idea notwithstanding.  The mutation is a change of alanine2 to threonine which can’t possibly snuggle up hydrophobically to isoleucine nearly as well as alanine did. This should significantly weaken the link between the two protofilaments and make fibril formation more difficult.

The Abeta structure of the paper also explains another mutation. This one increases the risk of Alzheimer’s disease (like many others which have been discovered).  It involves the same amino acid (alanine2) but this time it is changed to the more hydrophobic valine, probably resulting in a stronger hydrophobic interaction with isoLeucine41 (assuming that valine’s greater bulk doesn’t get in the way sterically).

Wonderful stuff to think and speculate about, now that we actually have some solid data to chew on.

Baudelaire comes to Chemistry

Could an evil molecule be beautiful? In Les Fleurs du Mal, a collection of poems, Baudelaire argued that there was a certain beauty in evil. Well, if there ever was an evil molecule, it’s the Abeta42 peptide, the main component of the senile plaque of Alzheimer’s disease, a molecule whose effects I spent my entire professional career as a neurologist ineffectually fighting. And yet, in a recent paper on the way it forms the fibrils constituting the plaque I found the structure compellingly beautiful.

The papers are Proc. Natl. Acad. Sci. vol. 113 pp. 9398 – 9400, E4976 – E4984 ’16. People have been working on the structure of the amyloid fibril of Alzheimer’s for decades, consistently stymied by its insolubility. The authors solved it not by Xray crystallography, not by cryoEM, but by solid state NMR. They basically looked at the distance constraints between pairs of isotopically labeled atoms, and built their model that way. Actually they built a bouquet of models using computer aided energy minimization of the peptide backbone. Another independent study produced nearly the same set.

The root mean square deviation of backbone atoms of the 10 lowest energy models of the bouquets in the two studies was small (.89 and .71 Angstroms). Even better the model bouquets of the two papers resemble each other.

There are two chains of Abeta42, EACH shaped like a double horseshoe (similar to the letter S). The two S’s meet around a twofold axis. The interface between the two S’s is form by two noncontiguous areas on each monomer (#15 – #17) and (#34 – #37).

The hydrophilic amino terminal residues (#1 – #14) are poorly ordered, but amino acids #15 – #42 are arranged into 4 short beta strands (I only see 3 obvious ones) that stack up and down the fibril into parallel in register beta-sheets. Each stack of double horseshoes forms a thread and the two threads twist around each other to form a two stranded protofilament.

Glycines allow sharp turns at the corners of the horseshoes. Hydrogen bonds between amides link the two layers of the fibrils. Asparagine side chains form ladders of hydrogen bonds up and down the fibrils. Water isn’t present between the layers because the beta sheets are so close together (counterintuitively this decreases the entropy, because water molecules don’t have to align themselves just so to solvate the side chains).

Each of the horseshoes is stabilized by hydrophobic interactions among the hydrophobic side chains buried in the core. Charged residues are solvent exposed. The interface between the two horsehoes is a hydrophobic interface.

Many of the famlial mutations are on the outer edges of double S structure — they are K16N, A21G, D23N, E22A, E22K, E22G, E22Q.

The surface hydrophobic patch formed by V40 and A42 may explain the greater rate of secondary nucleation by Abeta42 vs. Abeta40.

The cryoEM structures we have of Abeta42 are different showing the phenomenon of amyloid polymorphism.

The PNAS paper used reombinant Abeta and prepared homogenous fibrils by repeated seeding of dissolved Abeta42 with preformed fibrils. The other study used chemically synthesized Abeta and got fibrils without seeding. Details of pH, peptide concentration, salt concentration differed, and yet the results are the same, making both structures more secure.

The new structure doesn’t immediately suggest the toxic mechanism of Abeta.

To indulge in a bit of teleology — the structure is so beautiful and so intricately designed, that the aBeta42 peptide has probably been evolutionarily optimized to perform an (as yet unknown) function in our bodies. Animals lacking Abeta42’s parent (the amyloid precursor protein) don’t form neuromuscular synapses correctly, but they are viable.