Category Archives: Medicine in general

Does she or doesn’t she? Only her geneticist knows for sure

Back in the day there was a famous ad for Claroil — Does she or doesn’t she? Only her hairdresser knows for sure.  Now it’s the geneticist who can sequence genes for Two Pore Channels in pigment forming cells (melanocytes) who really knows.

Except for redheads, skin and hair color is determined by how much eumelanin you have.  All human melanins are  polymers of oxidation products of tyrosine (DOPA, DOPAquinone) and indole 5,6 quinone, so its chemical structure isn’t certain.  It is made inside a specialized organelle of the melanocyte called (logically enough) the melanosome.

There is all sorts of interesting chemistry and physiology involved.  In particular a melanosome protein called Pmel17 adopts an amyloid-like structure (so not all amyloid is bad !) for the construction of melanin.  The crucial enzyme oxidizing tyrosine is tyrosinase, and its activity strongly depends on pH, being most active at pH 7 (neutral pH).

In the melanosome membrane is found TPC2, which helps control ion flow in and out of the melanosome.  Two mutations Methionine #484 –> Leucine (or M484L) and Glycine #734 –> Glutamic acid (G734E) are associated with a shift from brown to blond.  You have blond hair if your melanosomes make less melanin.  Both mutations result in an increase in TPC2 activity resulting in lower pH, lower tyrosinase activity and less melanin in the melanosome — voila — a blond.

So it doesn’t take a big (one amino acid in over 734) change in the huge TCP2 protein for the shift to occur.

Advertisements

Who knew Marshall McLuhan was a molecular biologist

Marshall McLuhan famously said “the medium is the message”. Who knew he was talking about molecular biology?  But he was, if you think of the process of transcription of DNA into various forms of RNA as the medium and the products of transcription as the message.  That’s exactly what this paper [ Cell vol. 171 pp. 103 – 119 ’17 ] says.

T cells are a type of immune cell formed in the thymus.  One of the important transcription factors which turns on expression of the genes which make a T cell a Tell is called Bcl11b.  Early in T cell development it is sequestered away near the nuclear membrane in highly compacted DNA. Remember that you must compress your 1 meter of DNA down by 100,000fold to have it fit in the nucleus which is 1/100,000th of a meter (10 microns).

What turns it on?  Transcription of nonCoding (for protein) RNA calledThymoD.  From my reading of the paper, ThymoD doesn’t do anything, but just the act of opening up compacted DNA near the nuclear membrane produced by transcribing ThymoD is enough to cause this part of the genome to move into the center of the nucleus where the gene for Bcl11b can be transcribed into RNA.

There’s a lot more to the paper,  but that’s the message if you will.  It’s the act of transcription rather than what is being transcribed which is important.

The paper doesn’t talk about the structure of ThymoD — how long it is, whether it binds to anything in the nucleus — etc. etc.  Perhaps I’ve missed it.  I’ve written the lead author. Hopefully I won’t be too embarrassed by what he responds.

Here’s more about McLuhan — https://en.wikipedia.org/wiki/Marshall_McLuhan

If some of the terms used here are unfamiliar — look at the following post and follow the links as far as you need to.  https://luysii.wordpress.com/2010/07/07/molecular-biology-survival-guide-for-chemists-i-dna-and-protein-coding-gene-structure/

 

How fast is your biological clock ticking — latest results

Our family breeds like sequoias.  Medicine has improved, but biology hasn’t changed, and problems with fertility and miscarriages have emerged in the generation behind me.   A cousin had a child at 46 who is now in grad school.  My brother had a child at 48, also doing OK. One son, who is north of 50 has an infant and a 3 year old.  That’s why the following paper from Iceland is so relevant.  I’ve posted on this subject before, but the new paper has 10 times the data of the old [ Nature vol. 549 pp. 519 – 522 ’17 ].

The paper is from Iceland, and whether the data can be extrapolated to other populations isn’t clear — but the biology in question is so basic that I think it can. Some 1,548 mother father child trios had their entire genomes (to 35 fold coverage).  In addition, 225 of the children had reproduced, providing a few 2 generation families.  If any position in the 3,200,000,000 bases of the genome differs from that of the mother and the father, than a mutation has taken place.  It isn’t clear how old the children were when sequenced, so possibly some of the mutations arose since birth.

Some 108,778 de novo mutations were found in over 1548 + 225 (at least) individuals — so each individual carried an average of 61 de novo mutations.  When the number of mutations were plotted against the ages of both parents, it was found that each year a father waited to reproduce added 1.51 mutations.  Previous work (with much less data) stated that the age of the mother didn’t matter.  No so, although the mutational burden of an additional year before reproduction in a woman increased the mutations 4 times less (.37 extra mutations/year of maternal life).

The previous paper reported on was somewhat suspect, because the 78 parent child trios had a child with autism.  Not so in this population study.

The numbers were large enough, that the type of mutation could be studied.  Mothers and fathers had different types of mutations in different frequencies.   They found one 20 megaBase region on chromosome #8 with a mutation rate of cytosine to guanosine (C to G) 50 times higher than the rest of the genome.

People use ‘molecular clocks’ to time evolution of species, based on the assumption that the mutation rate is constant.  But it isn’t with age, and a shift in the average age for reproduction could seriously screw up the molecular clock predictions.

An average of 61 de novo mutations per individual sounds pretty horrible, but it isn’t when you consider that 3,200,000,000 – 61 positions were copied faithfully (an error rate of 1 in 50 million).

 

The worst name for a drug I’ve ever heard of

It is simply impossible for me to think of a worse name for a drug which might help people with Down syndrome than ALGERNON.   The authors can be excused as they’re all from Japan, but the editor of the paper Fred Gage should have known about ‘Flowers for Algernon’– https://en.wikipedia.org/wiki/Flowers_for_Algernon.  Briefly, it’s a story about a drug which tripled the intelligence of Algernon a laboratory mouse which was then given to a retarded individual (Charlie Gordon) whose intelligence similarly tripled, only to decline like Algernon’s.  It was originally a short story, then a book, then a play etc. etc.

The drug is potentially quite exciting — ALGERNON is an acronym forALtered GenERatioN Of Neurons).  It increases the number of neurons form by mice with a model of trisomy 21.  The brain is bigger, and the animals do better on tests.  It is thought to work by inhibiting an enzyme (DYRK1A) which adds phosphate to serine, threonine and tyrosine, making it a dual specificity kinase.  It phosphorylates a variety of proteins known to have significant effects on brain development (tau, cyclin D1, caspase9, Notch, gli1, etc). The net effect of DYRK1A inhibition is to increase neural stem cell proliferation during fetal life.

Chemists will be interested in just how simple the structure of ALGERNON is — it’s an all aromatic compound made of a pyridine linked to a fused 6:5 ring system in which the 5 membered ring contains 2 nitrogens.  That’s it.  No alcohols, methyls, ethyls, ..  amines, amides, ethers etc., etc.

The authors blue-sky a bit at the end.  They note that mice show neural proliferation during adult life (we do as well, but to a much lesser extent).  It might be useful to improve function in living Down syndrome individuals, and just about any other neurological problem in which neural proliferation would be beneficial.  It might also be offered to women carrying a Down fetus who object to abortion on moral grounds.  Exciting stuff, but for god’s sake change the name.

I’ve done what I can

Here is the current state of play on my idea that chronic fatigue syndrome might be due to an excess of senescent cells releasing inflammatory mediators. The idea is explained in a copy of the post below, which should be read before proceeding.

The best way to test the idea would be to look for p16^INK4a, a transcription elevated in senescent cells.  This is relatively specific for senescence, far more so than the 74 or so inflammatory mediators which are part of the Senescence Associated Secretory Phenotype (SASP).

The best place to do this would be the Mayo clinic which is currently vigorously investigating the role of senescent cells in aging, cancer and what have you.  When I was in practice, the Mayo clinic linkage system for medical records was legendary.  When Elsewhere General had 10 patients in a series of disease X, Mayo would have 100.  I’m sure they have seen tons of chronic fatigue patients and could easily measure p16^INK4a levels on them.  I’ve corresponded with one worker there (Bennett Childs) and urged him to try the idea — e.g. measure white blood cell levels of p16^INK4a in CFS patients and compare it to controls.  This is cleaner than measuring SASP, because inflammatory mediators can be released by almost any type of infection or pathologic condition.  I noted today, that one researcher is working on developing senolytics, which would be the therapy of choice should my idea pan out.

I”ve written the authors of the PNAS editorial (Komaroff) and the paper (Davis) in the past week but have heard nothing back.

I’ve also contacted the Open Medicine Foundation® (OMF) which appears to be a patient organization founded by a woman whose daughter came down with it.  They apparently even fund research.  They said that they’d share it with their research team.

I wrote the research director of another patient organization but have heard nothing back.

The  post below has been read 250 times.

I am a 79 year old retired neurologist with no academic affiliation, and no way to test the idea.  Hopefully some of those I’ve been in contact with will do so.   The patients are waiting.

Is the era of precision medicine for chronic fatigue syndrome at hand?

If an idea of mine is correct, it is possible that some patients with chronic fatigue syndrome (CFS) can be treated with specific medications based on the results of a few blood tests. This is precision medicine at its finest.  The data to test this idea has already been acquired, and nothing further needs to be done except to analyze it.

Athough the initial impetus for the idea happened only 3 months ago, there have been enough twists and turns that the best way explanation is by a timeline.

First some background:

As a neurologist I saw a lot of people who were chronically tired and fatigued, because neurologists deal with muscle weakness and diseases like myasthenia gravis which are associated with fatigue.  Once I ruled out neuromuscular disease as a cause, I had nothing to offer then (nor did medicine).  Some of these patients were undoubtedly neurotic, but there was little question in my mind that many others had something wrong that medicine just hadn’t figured out yet — not that it hasn’t been trying.

Infections of almost any sort are associated with fatigue, most probably caused by components of the inflammatory response.  Anyone who’s gone through mononucleosis knows this.    The long search for an infectious cause of chronic fatigue syndrome (CFS) has had its ups and downs — particularly downs — see https://luysii.wordpress.com/2011/03/25/evil-scientists-create-virus-causing-chronic-fatigue-syndrome-in-lab/

At worst many people with these symptoms are written off as crazy; at best, diagnosed as depressed  and given antidepressants.  The fact that many of those given antidepressants feel better is far from conclusive, since most patients with chronic illnesses are somewhat depressed.

The 1 June 2017 Cell had a long and interesting review of cellular senescence by Norman Sharpless [ vol. 169 pp. 1000 – 1011 ].  Here is some background about the entity.  If you are familiar with senescent cell biology skip to the paragraph marked **** below

Cells die in a variety of ways.  Some are killed (by infections, heat, toxins).  This is called necrosis. Others voluntarily commit suicide (this is called apoptosis).   Sometimes a cell under stress undergoes cellular senescence, a state in which it doesn’t die, but doesn’t reproduce either.  Such cells have a variety of biochemical characteristics — they are resistant to apoptosis, they express molecules which prevent them from proliferating and — most importantly — they secrete a variety of proinflammatory molecules collectively called the Senescence Associated Secretory Phenotype — SASP).

At first the very existence of the senescent state was questioned, but exist it does.  What is it good for?  Theories abound, one being that mutation is one cause of stress, and stopping mutated cells from proliferating prevents cancer. However, senescent cells are found during fetal life; and they are almost certainly important in wound healing.  They are known to accumulate the older you get and some think they cause aging.

Many stresses induce cellular senescence of which mutation is but one.  The one of interest to us is chemotherapy for cancer, something obviously good as a cancer cell turned senescent has stopped proliferating.   If you know anyone who has undergone chemotherapy, you know that fatigue is almost invariable.

****

One biochemical characteristic of the senescent cell is increased levels of a protein called p16^INK4a, which helps stop cellular proliferation.  While p16^INK4a can easily be measured in tissue biopsies, tissue biopsies are inherently invasive. Fortunately, p16^INK4a can also be measured in circulating blood cells.

What caught my eye in the Cell paper was a reference to a paper about cancer [ Cancer Discov. vol. 7 pp. 165 – 176 ’17 ] by M. Demaria, in which the levels of p16^INK4a correlated with the degree of fatigue after chemotherapy.  The more p16^INK4a in the blood cells the greater the fatigue.

I may have been the only reader of both papers with clinical experience wth chronic fatigue syndrome.  It is extremely difficult to objectively measure a subjective complaint such as fatigue.

As an example of the difficulty in correlating subjective complaints with objective findings, consider the nearly uniform complaint of difficulty thinking in depression, with how such patients actually perform on cognitive tests — e. g. there is  little if any correlation between complaints and actual performance — here’s a current reference — Scientific Reports 7, Article number: 3901(2017) —  doi:10.1038/s41598-017-04353.

If the results of the Cancer paper could be replicated, p16^INK4 would be the first objective measure of a patient’s individual sense of fatigue.

So I wrote both authors, suggesting that the p16^INK4a test be run on a collection of chronic fatigue syndrome (CFS) patients. Both authors replied quickly, but thought the problem would be acquiring patients.  Demaria said that Sharpless had a lab all set up to do the test.

Then fate (in the form of Donald Trump) supervened.  A mere 9 days after the Cell issue appeared, Sharpless was nominated to be the head of the National Cancer Institute by President Trump.  This meant Dr. Sharpless had far bigger fish to fry, and he would have to sever all connection with his lab because of conflict of interest considerations.

I also contacted a patient organization for chronic fatigue syndrome without much success.  Their science advisor never responded.

There matters stood until 22 August when a paper and an editorial about it came out [ Proc. Natl. Acad. Sci. vol. 114 pp. 8914 – 8916, E7150 – E7158 ’17 ].  The paper represented a tremendous amount of data (and work).  The blood levels of 51 cytokines (measures of inflammation) and adipokines (hormones released by fat) were measured in both 192 patients with CFS (which can only be defined by symptoms) and 293 healthy controls matched for age and gender.

In this paper, levels of 17 of the 51 cytokines correlated with severity of CFS. This is a striking similarity with the way the p16^INK4 levels correlated with the degree of fatigue after chemotherapy).  So I looked up the individual elements of the SASP (which can be found in Annu Rev Pathol. 21010; 5: 99–118.)  There are 74 of them. I wondered how many of the 51 cytokines measured in the PNAS paper were in the SASP.  This is trickier than it sounds as many cytokines have far more than one name.  The bottom line is that 20 SASPs are in the 51 cytokines measured in the paper.

If the fatigue of CFS is due to senescent cells and the SASPs  they release, then they should be over-represented in the 17 of the 51 cytokines correlating with symptom severity.  Well they are; 9 out of the 17 are SASP.  However although suggestive, this increase is not statistically significant (according to my consultants on Math Stack Exchange).

After wrote I him about the new work, Dr. Sharpless noted that CFS is almost certainly a heterogeneous condition. As a clinician with decades of experience, I’ve certainly did see some of the more larcenous members of our society who used any subjective diagnosis to be compensated, as well as a variety of individuals who just wanted to withdraw from society, for whatever reason. They are undoubtedly contaminating the sample in the paper. Dr. Sharpless thought the idea, while interesting, would be very difficult to test.

But it wouldn’t at all.  Not with the immense amount of data in the PNAS paper.

Here’s how. Take each of the 9 SASPs and see how their levels correlate with the other 16 (in each of the 192 CSF patients). If they correlate better with SASPs than with nonSASPs, than this would be evidence for senescent cells being the cause some cases of CFS. In particular, patients with a high level of any of the 9 SASPs should be studied for such correlations.  Doing so should weed out some of the heterogeneity of the 192 patients in the sample.

This is why the idea is testable and, even better, falsifiable, making it a scientific hypothesis (a la Karl Popper).  The data to refute it is in the possession of the authors of the paper.

Suppose the idea turns out to be correct and that some patients with CFS are in fact that way because, for whatever reason, they have a lot of senescent cells releasing SASPs.

This would mean that it would be time to start trials of senolyic drugs which destroy senescent cells on the group with elevated SASPs. Fortunately, a few senolytics are currently inc linical use.  This would be precision medicine at its finest.

Being able to alleviate the symptoms of CFS would be worthwhile in itself, but SASP levels could also be run on all sorts of conditions associated with fatigue, most notably infection. This might lead to symptomatic treatment at least.  Having gone through mono in med school, I would have loved to have been able to take something to keep me from falling asleep all the time.

Is the era of precision medicine for chronic fatigue syndrome at hand?

If an idea of mine is correct, it is possible that some patients with chronic fatigue syndrome (CFS) can be treated with specific medications based on the results of a few blood tests. This is precision medicine at its finest.  The data to test this idea has already been acquired, and nothing further needs to be done except to analyze it.

Athough the initial impetus for the idea happened only 3 months ago, there have been enough twists and turns that the best way explanation is by a timeline.

First some background:

As a neurologist I saw a lot of people who were chronically tired and fatigued, because neurologists deal with muscle weakness and diseases like myasthenia gravis which are associated with fatigue.  Once I ruled out neuromuscular disease as a cause, I had nothing to offer then (nor did medicine).  Some of these patients were undoubtedly neurotic, but there was little question in my mind that many others had something wrong that medicine just hadn’t figured out yet — not that it hasn’t been trying.

Infections of almost any sort are associated with fatigue, most probably caused by components of the inflammatory response.  Anyone who’s gone through mononucleosis knows this.    The long search for an infectious cause of chronic fatigue syndrome (CFS) has had its ups and downs — particularly downs — see https://luysii.wordpress.com/2011/03/25/evil-scientists-create-virus-causing-chronic-fatigue-syndrome-in-lab/

At worst many people with these symptoms are written off as crazy; at best, diagnosed as depressed  and given antidepressants.  The fact that many of those given antidepressants feel better is far from conclusive, since most patients with chronic illnesses are somewhat depressed.

The 1 June 2017 Cell had a long and interesting review of cellular senescence by Norman Sharpless [ vol. 169 pp. 1000 – 1011 ].  Here is some background about the entity.  If you are familiar with senescent cell biology skip to the paragraph marked **** below

Cells die in a variety of ways.  Some are killed (by infections, heat, toxins).  This is called necrosis. Others voluntarily commit suicide (this is called apoptosis).   Sometimes a cell under stress undergoes cellular senescence, a state in which it doesn’t die, but doesn’t reproduce either.  Such cells have a variety of biochemical characteristics — they are resistant to apoptosis, they express molecules which prevent them from proliferating and — most importantly — they secrete a variety of proinflammatory molecules collectively called the Senescence Associated Secretory Phenotype — SASP).

At first the very existence of the senescent state was questioned, but exist it does.  What is it good for?  Theories abound, one being that mutation is one cause of stress, and stopping mutated cells from proliferating prevents cancer. However, senescent cells are found during fetal life; and they are almost certainly important in wound healing.  They are known to accumulate the older you get and some think they cause aging.

Many stresses induce cellular senescence of which mutation is but one.  The one of interest to us is chemotherapy for cancer, something obviously good as a cancer cell turned senescent has stopped proliferating.   If you know anyone who has undergone chemotherapy, you know that fatigue is almost invariable.

****

One biochemical characteristic of the senescent cell is increased levels of a protein called p16^INK4a, which helps stop cellular proliferation.  While p16^INK4a can easily be measured in tissue biopsies, tissue biopsies are inherently invasive. Fortunately, p16^INK4a can also be measured in circulating blood cells.

What caught my eye in the Cell paper was a reference to a paper about cancer [ Cancer Discov. vol. 7 pp. 165 – 176 ’17 ] by M. Demaria, in which the levels of p16^INK4a correlated with the degree of fatigue after chemotherapy.  The more p16^INK4a in the blood cells the greater the fatigue.

I may have been the only reader of both papers with clinical experience wth chronic fatigue syndrome.  It is extremely difficult to objectively measure a subjective complaint such as fatigue.

As an example of the difficulty in correlating subjective complaints with objective findings, consider the nearly uniform complaint of difficulty thinking in depression, with how such patients actually perform on cognitive tests — e. g. there is  little if any correlation between complaints and actual performance — here’s a current reference — Scientific Reports 7, Article number: 3901(2017) —  doi:10.1038/s41598-017-04353.

If the results of the Cancer paper could be replicated, p16^INK4 would be the first objective measure of a patient’s individual sense of fatigue.

So I wrote both authors, suggesting that the p16^INK4a test be run on a collection of chronic fatigue syndrome (CFS) patients. Both authors replied quickly, but thought the problem would be acquiring patients.  Demaria said that Sharpless had a lab all set up to do the test.

Then fate (in the form of Donald Trump) supervened.  A mere 9 days after the Cell issue appeared, Sharpless was nominated to be the head of the National Cancer Institute by President Trump.  This meant Dr. Sharpless had far bigger fish to fry, and he would have to sever all connection with his lab because of conflict of interest considerations.

I also contacted a patient organization for chronic fatigue syndrome without much success.  Their science advisor never responded.

There matters stood until 22 August when a paper and an editorial about it came out [ Proc. Natl. Acad. Sci. vol. 114 pp. 8914 – 8916, E7150 – E7158 ’17 ].  The paper represented a tremendous amount of data (and work).  The blood levels of 51 cytokines (measures of inflammation) and adipokines (hormones released by fat) were measured in both 192 patients with CFS (which can only be defined by symptoms) and 293 healthy controls matched for age and gender.

In this paper, levels of 17 of the 51 cytokines correlated with severity of CFS. This is a striking similarity with the way the p16^INK4 levels correlated with the degree of fatigue after chemotherapy).  So I looked up the individual elements of the SASP (which can be found in Annu Rev Pathol. 21010; 5: 99–118.)  There are 74 of them. I wondered how many of the 51 cytokines measured in the PNAS paper were in the SASP.  This is trickier than it sounds as many cytokines have far more than one name.  The bottom line is that 20 SASPs are in the 51 cytokines measured in the paper.

If the fatigue of CFS is due to senescent cells and the SASPs  they release, then they should be over-represented in the 17 of the 51 cytokines correlating with symptom severity.  Well they are; 9 out of the 17 are SASP.  However although suggestive, this increase is not statistically significant (according to my consultants on Math Stack Exchange).

After wrote I him about the new work, Dr. Sharpless noted that CFS is almost certainly a heterogeneous condition. As a clinician with decades of experience, I’ve certainly did see some of the more larcenous members of our society who used any subjective diagnosis to be compensated, as well as a variety of individuals who just wanted to withdraw from society, for whatever reason. They are undoubtedly contaminating the sample in the paper. Dr. Sharpless thought the idea, while interesting, would be very difficult to test.

But it wouldn’t at all.  Not with the immense amount of data in the PNAS paper.

Here’s how. Take each of the 9 SASPs and see how their levels correlate with the other 16 (in each of the 192 CSF patients). If they correlate better with SASPs than with nonSASPs, than this would be evidence for senescent cells being the cause some cases of CFS. In particular, patients with a high level of any of the 9 SASPs should be studied for such correlations.  Doing so should weed out some of the heterogeneity of the 192 patients in the sample.

This is why the idea is testable and, even better, falsifiable, making it a scientific hypothesis (a la Karl Popper).  The data to refute it is in the possession of the authors of the paper.

Suppose the idea turns out to be correct and that some patients with CFS are in fact that way because, for whatever reason, they have a lot of senescent cells releasing SASPs.

This would mean that it would be time to start trials of senolyic drugs which destroy senescent cells on the group with elevated SASPs. Fortunately, a few senolytics are currently inc linical use.  This would be precision medicine at its finest.

Being able to alleviate the symptoms of CFS would be worthwhile in itself, but SASP levels could also be run on all sorts of conditions associated with fatigue, most notably infection. This might lead to symptomatic treatment at least.  Having gone through mono in med school, I would have loved to have been able to take something to keep me from falling asleep all the time.

 

18 at one blow said the molecular biologist

With apologies to the brothers Grimm, molecular biologists may have found a way to treat 18 genetic diseases at one blow [ Cell vol. 170 pp. 899 – 912 ’17 ]. They use adeno-associated virus (AAV) packing a modified enzyme and an RNA to remove repeat expansions from RNA.   The paper give a list of the 18, all but one of which are neurologic.  They include such horrors as Huntington’s chorea, the most common form of familial ALS, 3 forms of spinocerebellar ataxia and 6 forms of spinocerebellar atrophy.

They use Cas9 from Streptococcus Pyogenes, part of the CRISPR system (https://en.wikipedia.org/wiki/CRISPR)  bacteria use to defend themselves against viruses, with a single guide RNA.  Even more interestingly, Cas9 is an enzyme which breaks up RNA, but the Cas9 they used is catalytically dead.  They think that just binding to the aggregated RNA containing the repeats is enough to break up the aggregate.  This is the way antiSense oligoNucleotides are thought to work.

The problem with getting a bacterial enzyme into a human cell is avoided here by using a virus to infect them (AAV).  It did get rid of RNA aggregates in patients’ cells from 4 of the diseases (two myotonic dystrophies, and the familial ALS).

It is almost too fantastic to be true.

Why almost all of these repeat expansion diseases affect the nervous system is anyone’s guess.  As you can image theories abound.  So all we have to do is figure out how to get the therapy into the brain (hardly a small task).

Jerry Lewis R. I. P.

Jerry Lewis died while I was at band camp for adults.  Although regarded in this country as a bozo, he did a lot of good.  The muscular dystrophy association wouldn’t be what it was without all the work he did for it.  I ran one of their clinics in the 70s and 80s.  Back then, they were so flush that they didn’t even submit claims to insurance companies for visits to the clinics (initially at least, but they wised up eventually).

 I went to two directors’ meetings, one in LA the other in Tucson.  They were purely scientific.  Jerry would have received quite a round of applause, but he didn’t show.  A major topic of conversation between directors was why and how Jerry became interested in muscular dystrophy.  No one knew, and I don’t think anyone does to this day.  The New York Times obit said he raised 2 billion for the MDA.

We will never understand the French.  They thought Jerry was a comic genius and took his work very seriously.  At first I thought it was a form of condescension, but it wasn’t.

The French will never understand us.  At the band camp I was fortunate enough to play a Poulenc sonata with a marvelous flutist.  Years ago I heard an interview with the great French pianist Pascal Roget, when here to play some of Poulenc’s music.  He noted that Poulenc wasn’t highly thought of in France being regarded as somewhat of clown.  He is greatly admired here in the states.

Band camp had the usual collection of amateur musicians — out of 115 or so, there were (at least) two full professors of mathematics, a physicist, a programmer, a PhD in mathematics education, and numerous MDs.  And those were just the ones I met and talked to. This always seems to be the species of people interested in playing music not professionally (but not unprofessionally).

Should you take aspirin after you exercise?

I just got back from a beautiful four and a half mile walk around a reservoir behind my house.  I always take 2 adult aspirin after such things like this.  A recent paper implies that perhaps I should not [ Proc. Natl. Acad. Sci. vol. 114 pp. 6675 – 6684 ’17 ].  Here’s why.

Muscle has a set of stem cells all its own.  They are called satellite cells.  After injury they proliferate and make new muscle. One of the triggers for this is a prostaglandin known as PGE2 — https://en.wikipedia.org/wiki/Prostaglandin_E2 — clearly a delightful structure for the organic chemist to make.  It binds to a receptor on the satellite cell (called EP4R) following which all sorts of things happen, which will make sense to you if you know some cellular biochemistry.  Activation of EP4R triggers activation of the cyclic AMP (CAMP) phosphoCREB pathway.  This activates Nurr1, a transcription factor which causes cellular proliferation.

Why no aspirin? Because it inhibits cyclo-oxygenase which forms the 5 membered ring of PGE2.

I think you should still aspirin afterwards, as the injury produced in the paper was pretty severe — muscle toxins, cold injury etc. etc. Probably the weekend warriors among you don’t damage your muscles that much.

A few further points about aspirin and the NSAIDs

Now aspirin is an NSAID (NonSteroid AntiInflammatory Drug) — along with a zillion others (advil, anaprox, ansaid, clinoril, daypro, dolobid, feldene, indocin — etc. etc. a whole alphabet’s worth). It is rather different in that it has an acetyl group on the benzene ring.  Could it be an acetylating agent for things like histones and transcription factors, producing far more widespread effects than those attributable to cyclo-oxygenase inhibition.   I’ve looked at the structures of a few of them — some have CH2-COOH moieties in them, which might be metabolized to an acetyl group –doubt.  Naproxen (Anaprox, Naprosyn) does have an acetyl group — but the other 13 structures I looked at do not.

Another possible negative of aspirin after exercise, is the fact that inhibition of platelet cyclo-oxygenase makes it harder for them to stick together and form clots (this is why it is used to prevent heart attack and stroke). So aspirin might result in more extensive micro-hemorrhages in muscle after exercise (if such things exist).

Gotterdamerung — The Twilight of the GWAS

Life may be like a well, but cellular biochemistry and gene function is like a mattress.  Push on it anywhere and everything changes, because it’s all hooked together.  That’s the only conclusion possible if a review of genome wide association studies (GWAS) is correct [ Cell vol. 169 pp. 1177 – 1186 ’17 ].

 It’s been a scandal for years that GWAS studies as they grow larger and larger are still missing large amounts of the heritability of known very heritable conditions (e.g. schizophrenia, height).  It’s been called the dark matter of the genome (e.g. we know it’s there, but we don’t know what it is).

If you’re a little shaky about how GWAS works have a look at https://luysii.wordpress.com/2014/08/24/tolstoy-rides-again-schizophrenia/ — it will come up again later in this post.

We do know that less than 10% of the SNPs found by GWAS lie in protein coding genes — this means either that they are randomly distributed, or that they are in regions controlling gene expression.  Arguing for randomness — the review states that the heritability contributed by each chromosome tends to be closely proportional to chromosome length.  Schizophrenia is known to be quite heritable, and monozygotic twins have a concordance rate of 40%.  Yet an amazing study (which is quoted but which I have not read) estimates that nearly 100% of all 1 megabase windows in the human genome contribute to schizophrenia heritability (Nature Genet. vol. 47 pp. 1385 – 1392 ’15). Given the 3.2 gigaBase size of our genome that’s 3,200 loci.

Another example is the GIANT study about the heritability of height.  The study was based on 250,000 people and some 697 gene wide significant loci were found.  In aggregate they explain a mere SIXTEEN PERCENT.

So what is going on?

It gets back to the link posted earlier. The title —  “Tolstoy rides again”  isn’t a joke.  It refers to the opening sentence of Anna Karenina — “Happy families are all alike; every unhappy family is unhappy in its own way”.  So there are many routes to schizophrenia (and they are spread all over the genome).

The authors of the review think that larger and larger GWAS studies (some are planned with over a million participants) are not going to help and are probably a waste of money.  Whether the review is Gotterdamerung for GWAS isn’t clear, but the review is provocative.The review is new and it will be interesting to see the response by the GWAS people.

So what do they think is going on?  Namely that everything in organismal and cellular biochemistry, genetics and physiology is related to everything else.  Push on it in one place and like a box spring mattress, everything changes.  The SNPs found outside the DNA coding for proteins are probably changing the control of protein synthesis of all the genes.

The dark matter of the genome is ‘the plan’ which makes the difference between animate and inanimate matter.   For more on this please see — https://luysii.wordpress.com/2015/12/15/it-aint-the-bricks-its-the-plan-take-ii/

Fascinating and enjoyable to be alive at such a time in genetics, biochemistry and molecular biology.