Category Archives: Medicine in general

Play the (genetic) hand you’ve been dealt but don’t spindle, fold or mutilate your cards

Back in the day, computers were programmed by inserting multiple punch cards https://en.wikipedia.org/wiki/Punched_card, each containing a machine instruction. At the bottom of the card it said “do not fold, spindle, or mutilate”. My wife used them back then when she expected to be a widow if and when I got sent to Vietnam.

So it is with you and the genetic hand of coronary artery disease risk you’ve been dealt. [ Cell vol. 167 p. 1431 ’16 ] refers to a recent New England Journal of Medicine article –2016;DOI:http://dx.doi.org/10.1056/NEJMoa1605086.

It’s a very good study, with large numbers of participants in three prospective cohorts — 7814 participants in the Atherosclerosis Risk in Communities (ARIC) study, 21,222 in the Women’s Genome Health Study (WGHS), and 22,389 in the Malmö Diet and Cancer Study (MDCS) — plus 4260 participants in the cross-sectional BioImage Study for whom genotype and covariate data were available. Adherence to a healthy lifestyle among the participants was also determined using a scoring system consisting of four factors: no current smoking, no obesity, regular physical activity, and a healthy diet (hardly complicated).

As you probably know, Genome Wide Association Studies have identified over 50 places in our genomes in which slight variations (the technical term is single nucleotide polymorphisms — SNPs ) are associated with increased risk of coronary artery disease. Since vascular disease is a generalized problem, these SNPs also increase the risk of other vascular problems, notably stroke. None of them increases the risk very much, and even together they don’t explain much of the genetic risk of vascular disease (which we know is there). However, they were all determined (at least in the 4260) and a genetic risk score was calculated. So there were people with high, low and medium degrees of risk.

In all risk groups, high, low, whatever, a simple healthy lifestyle (no smoking, not fat, some exercise, healthy diet) decreased the coronary event rate (heart attack, death) by nearly half. So how bad was high risk? Bad indeed, the event rate in the high risk group was nearly twice that of the low risk group.

Even better, healthy lifestyle decreased risk the most just where you’d want it — in the highest risk group. You can reduce your risk of being eaten by a bear by not going to Yellowstone by 99% or more but so what.

This work is to be believed, because the number of events is high enough –1230 coronary events were observed in the ARIC cohort (median follow-up, 18.8 years), 971 coronary events in the WGHS cohort (median follow-up, 20.5 years), and 2902 coronary events in the MDCS cohort (median follow-up, 19.4 years).

So as my late father said (who lived to 100) when asked what his secret was “I chose my parents very carefully”. Well, we can’t do that, but don’t spindle the cards.

Very sad

The failure of Lilly’s antibody against the aBeta protein is very sad on several levels. My year started out going to a memorial service for a college classmate, fellow doc and friend who died of Alzheimer’s disease. He had some 50 papers to his credit mostly involving clinical evaluation of drugs such as captopril. Even so it was an uplifting experience — here’s a link –https://luysii.wordpress.com/2016/01/05/an-uplifting-way-to-start-the-new-year/

There is a large body of theory that says it should have worked. Derek Lowe’s blog “In the Pipeline” has much more — and the 80 or so comments on his post will expose you to many different points of view on Abeta — here’s the link. http://blogs.sciencemag.org/pipeline/archives/2016/11/23/eli-lillys-alzheimers-antibody-does-not-work.

It’s time to ‘let 100 flowers bloom’ in Alzheimer’s research — https://en.wikipedia.org/wiki/Hundred_Flowers_Campaign. E. g. it’s time to look at some far out possibilities — we know that most will be wrong that they will be crushed, as Mao did to all the flowers. Even so it’s worth doing.

So to buck up your spirits, here’s an old post (not a link) raising the possibility that Alzheimer’s might be a problem in physics rather than chemistry. If that isn’t enough another post follows that one on Lopid (Gemfibrozil).

Could Alzheimer’s disease be a problem in physics rather than chemistry?

Two seemingly unrelated recent papers could turn our attention away from chemistry and toward physics as the basic problem in Alzheimer’s disease. God knows we could use better therapy for Alzheimer’s disease than we have now. Any new way of looking at Alzheimer’s, no matter how bizarre,should be welcome. The approaches via the aBeta peptide, and the enzymes producing it just haven’t worked, and they’ve really been tried — hard.

The first paper [ Proc. Natl. Acad. Sci. vol. 111 pp. 16124 – 16129 ’14 ] made surfaces with arbitrary degrees of roughness, using the microfabrication technology for making computer chips. We’re talking roughness that’s almost smooth — bumps ranging from 320 Angstroms to 800. Surfaces could be made quite regular (as in a diffraction grating) or irregular. Scanning electron microscopic pictures were given of the various degrees of roughness.

Then they plated cultured primitive neuronal cells (PC12 cells) on surfaces of varying degrees of roughness. The optimal roughness for PC12 to act more like neurons was an Rq of 320 Angstroms.. Interestingly, this degree of roughness is identical to that found on healthy astrocytes (assuming that culturing them or getting them out of the brain doesn’t radically change them). Hippocampal neurons in contact with astrocytes of this degree of roughness also began extending neurites. It’s important to note that the roughness was made with something neurons and astrocytes never see — silica colloids of varying sizes and shapes.

Now is when it gets interesting. The plaques of Alzheimer’s disease have surface roughness of around 800 Angstroms. Roughness of the artificial surface of this degree was toxic to hippocampal neurons (lower degrees of roughness were not). Normal brain has a roughness with a median at 340 Angstroms.

So in some way neurons and astrocytes can sense the amount of roughness in surfaces they are in contact with. How do they do this — chemically it comes down to Piezo1 ion channels, a story in themselves [ Science vol. 330 pp. 55 – 60 ’10 ] These are membrane proteins with between 24 and 36 transmembrane segments. Then they form tetramers with a huge molecular mass (1.2 megaDaltons) and 120 or more transmembrane segments. They are huge (2,100 – 4,700 amino acids). They can sense mechanical stress, and are used by endothelial cells to sense how fast blood is flowing (or not flowing) past them. Expression of these genes in mechanically insensitive cells makes them sensitive to mechanical stimuli.

The paper is somewhat ambiguous on whether expressing piezo1 is a function of neuronal health or sickness. The last paragraph appears to have it both ways.

So as we leave paper #1, we note that that neurons can sense the physical characteristics of their environment, even when it’s something as un-natural as a silica colloid. Inhibiting Piezo1 activity by a spider venom toxin (GsMTx4) destroys this ability. The right degree of roughness is healthy for neurons, the wrong degree kills them. Clearly the work should be repeated with other colloids of a different chemical composition.

The next paper [ Science vol. 342 pp. 301, 316 – 317, 373 – 377 ’13 ] Talks about the plumbing system of the brain, which is far more active than I’d ever imaged. The glymphatic system is a network of microscopic fluid filled channels. Cerebrospinal fluid (CSF) bathes the brain. It flows into the substance of the brain (the parenchyma) along arteries, and the fluid between the cellular elements (interstitial fluid) it exchanges with flows out of the brain along the draining veins.

This work was able to measure the amount of flow through the lymphatics by injected tracer into the CSF and/or the brain parenchyma. The important point about this is that during sleep these channels expand by 60%, and beta amyloid is cleared twice as quickly. Arousal of a sleeping mouse decreases the influx of tracer by 95%. So this amazing paper finally comes up with an explanation of why we spend 1/3 of our lives asleep — to flush toxins from the brain.

If you wish to read (a lot) more about this system — see an older post from when this paper first came out — https://luysii.wordpress.com/2013/10/21/is-sleep-deprivation-like-alzheimers-and-why-we-need-sleep-in-the-first-place/

So what is the implication of these two papers for Alzheimer’s disease?

First
The surface roughness of the plaques (800 Angstroms roughness) may physically hurt neurons. The plaques are much larger or Alzheimer would never have seen them with the light microscopy at his disposal.

Second
The size of the plaques themselves may gum up the brain’s plumbing system.

The tracer work should certainly be repeated with mouse models of Alzheimer’s, far removed from human pathology though they may be.

I find this extremely appealing because it gives us a new way of thinking about this terrible disorder. In addition it might explain why cognitive decline almost invariably accompanies aging, and why Alzheimer’s disease is a disorder of the elderly.

Next, assume this is true? What would be the therapy? Getting rid of the senile plaques in and of itself might be therapeutic. It is nearly impossible for me to imagine a way that this could be done without harming the surrounding brain.

Before we all get too excited it should be noted that the correlation between senile plaque burden and cognitive function is far from perfect. Some people have a lot of plaque (there are ways to detect them antemortem) and normal cognitive function. The work also leaves out the second pathologic change seen in Alzheimer’s disease, the neurofibrillary tangle which is intracellular, not extracellular. I suppose if it caused the parts of the cell containing them to swell, it too could gum up the plumbing.

As far as I can tell, putting the two papers together conceptually might even be original. Prasad Shastri, the author of the first paper, was very helpful discussing some points about his paper by Email, but had not heard of the second and is looking at it this weekend.

Also a trial of Lopid (Gemfibrozil) as something which might be beneficial is in progress — there is some interesting theory behind this. The trial has about another year to go. Here’s that post and happy hunting

Takes me right back to grad school

How many times in grad school did you or your friends come up with a good idea, only to see it appear in the literature a few months later by someone who’d been working on it for much longer. We’d console ourselves with the knowledge that at least we were thinking well and move on.

Exactly that happened to what I thought was an original idea in my last post — e.g. that Gemfibrozil (Lopid) might slow down (or even treat) Alzheimer’s disease. I considered the post the most significant one I’d ever written, and didn’t post anything else for a week or two, so anyone coming to the blog for any reason would see it first.

A commenter on the first post gave me a name to contact to try out the idea, but I’ve been unable to reach her. Derek Lowe was quite helpful in letting me link to the post, so presently the post has had over 200 hits. Today I wrote an Alzheimer’s researcher at Yale about it. He responded nearly immediately with a link to an ongoing clinical study in progress in Kentucky

On Aug 3, 2015, at 3:04 PM, Christopher van Dyck wrote:

Dear Dr. xxxxx

Thanks for your email. I agree that this is a promising mechanism.
My colleague Greg Jicha at U.Kentucky is already working on this:
https://www.nia.nih.gov/alzheimers/clinical-trials/gemfibrozil-predementia-alzheimers-disease

Our current efforts at Yale are on other mechanisms:
http://www.adcs.org/studies/Connect.aspx

We can’t all test every mechanism, but hopefully we can collectively test the important ones.

-best regards,
Christopher H. van Dyck, MD
Professor of Psychiatry, Neurology, and Neurobiology
Director, Alzheimers Disease Research Unit

Am I unhappy about losing fame and glory being the first to think of it? Not in the slightest. Alzheimer’s is a terrible disease and it’s great to see the idea being tested.

Even more interestingly, a look at the website for the study shows, that somehow they got to Gemfibrozil by a different mechanism — microRNAs rather than PPARalpha.

I plan to get in touch with Dr. Jicha to see how he found his way to Gemfibrozil. The study is only 1 year in duration, and hopefully is well enough powered to find an effect. These studies are incredibly expensive (and an excellent use of my taxes). I never been involved in anything like this, but data mining existing HMO data simply has to be cheaper. How much cheaper I don’t know.

Here’s the previous post —

Could Gemfibrozil (Lopid) be used to slow down (or even treat) Alzheimer’s disease?

Is a treatment of Alzheimer’s disease at hand with a drug in clinical use for nearly 40 years? A paper in this week’s PNAS implies that it might (vol. 112 pp. 8445 – 8450 ’15 7 July ’15). First a lot more background than I usually provide, because some family members of the afflicted read everything they can get their hands on, and few of them have medical or biochemical training. The cognoscenti can skip past this to the text marked ***

One of the two pathologic hallmarks of Alzheimer’s disease is the senile plaque (the other is the neurofibrillary tangle). The major component of the plaque is a fragment of a protein called APP (Amyloid Precursor Protein). Normally it sits in the cellular membrane of nerve cells (neurons) with part sticking outside the cell and another part sticking inside. The protein as made by the cell contains anywhere from 563 to 770 amino acids linked together in a long chain. The fragment destined to make up the senile plaque (called the Abeta peptide) is much smaller (39 to 42 amino acids) and is found in the parts of APP embedded in the membrane and sticking outside the cell.

No protein lives forever in the cell, and APP is no exception. There are a variety of ways to chop it up, so its amino acids can be used for other things. One such chopper is called ADAM10 (aka Kuzbanian). ADAM10breaks down APP in such a way that Abeta isn’t formed. The paper essentially found that Gemfibrozil (commercial name Lopid) increases the amount of ADAM10 around. If you take a mouse genetically modified so that it will get senile plaques and decrease ADAM10 you get a lot more plaques.

The authors didn’t artificially increase the amount of ADAM10 to see if the animals got fewer plaques (that’s probably their next paper).

So there you have it. Should your loved one get Gemfibrozil? It’s a very long shot and the drug has significant side effects. For just how long a shot and the chain of inferences why this is so look at the text marked @@@@

****

How does Gemfibrozil increase the amount of ADAM10 around? It binds to a protein called PPARalpha which is a type of nuclear hormone receptor. PPARalpha binds to another protein called RXR, and together they turn on the transcription of a variety of genes, most of which are related to lipid metabolism. One of the genes turned on is ADAM10, which really has never been mentioned in the context of lipid metabolism. In any event Gemfibrozil binds to PPARalpha which binds more effectively to RAR which binds more effectively to the promoter of the ADAM10 gene which makes more ADAM10 which chops of APP in such fashion that Abeta isn’t made.

How in the world the authors got to PPARalpha from ADAM10 is unknown — but I’ve written the following to the lead author just before writing this post.

Dr. Pahan;

Great paper. People have been focused on ADAM10 for years. It isn’t clear to me how you were led to PPARgamma from reading your paper. I’m not sure how many people are still on Gemfibrozil. Probably most of them have some form of vascular disease, which increases the risk of dementia of all sorts (including Alzheimer’s). Nonetheless large HMOs have prescription data which can be mined to see if the incidence of Alzheimer’s is less on Gemfibrozil than those taking other lipid lowering agents, or the population at large. One such example (involving another class of drugs) is JAMA Intern Med. 2015;175(3):401-407, where the prescriptions of 3,434 individuals 65 years or older in Group Health, an integrated health care delivery system in Seattle, Washington. I thought the conclusions were totally unwarranted, but it shows what can be done with data already out there. Did you look at other fibrates (such as Atromid)?

Update: 22 July ’15

I received the following back from the author

Dear Dr.

Wonderful suggestion. However, here, we have focused on the basic science part because the NIH supports basic science discovery. It is very difficult to compete for NIH R01 grants using data mining approach.

It is PPARα, but not PPARγ, that is involved in the regulation of ADAM10. We searched ADAM10 gene promoter and found a site where PPAR can bind. Then using knockout cells and ChIP assay, we confirmed the participation of PPARα, the protein that controls fatty acid metabolism in the liver, suggesting that plaque formation is controlled by a lipid-lowering protein. Therefore, many colleagues are sending kudos for this publication.

Thank you.

Kalipada Pahan, Ph.D.

The Floyd A. Davis, M.D., Endowed Chair of Neurology

Professor

Departments of Neurological Sciences, Biochemistry and Pharmacology

So there you have it. An idea worth pursuing according to Dr. Pahan, but one which he can’t (or won’t). So, dear reader, take it upon yourself (if you can) to mine the data on people given Gemfibrozil to see if their risk of Alzheimer’s is lower. I won’t stand in your way or compete with you as I’m a retired clinical neurologist with no academic affiliation. The data is certainly out there, just as it was for the JAMA Intern Med. 2015;175(3):401-407 study. Bon voyage.

@@@@

There are side effects, one of which is a severe muscle disease, and as a neurologist I saw someone so severely weakened by drugs of this class that they were on a respirator being too weak to breathe (they recovered). The use of Gemfibrozil rests on the assumption that the senile plaque and Abeta peptide are causative of Alzheimer’s. A huge amount of money has been spent and lost on drugs (antibodies mostly) trying to get rid of the plaques. None have helped clinically. It is possible that the plaque is the last gasp of a neuron dying of something else (e.g. a tombstone rather than a smoking gun). It is also possible that the plaque is actually a way the neuron was defending itself against what was trying to kill it (e.g. the plaque as a pile of spent bullets).

A scary paper: Cancer by proxy

Can a good kid growing up in a bad neighborhood turn bad? Most think so. What about a genetically normal cell growing up in a bad neighborhood? Can it turn cancerous if its neighbors have a mutation ? A recent paper [ Nature vol. 539 pp.304 – 308 ’16b] demonstrates how this can happen.

A gene called PTPN11 is mutated in myelomonocytic leukemia (MML)in humans and mice. Expressing the mutant in blood cells causes leukemia in mice (nothing spectacular there).

However, expressing the mutant in marrow supporting cells, not blood cells or blood stem cells for long enough gives MML in mice which can be transplanted into normal mice producing MML there.

Note that the blood stem cells don’t contain the mutant gene. One theory has it that mutant PTPN11 recruits monocytes, which then produce other stuff (CCL3 also known as MIP1alpha and interleukin1Beta), which then turns on blood stem cells to proliferate madly causing leukemia. Giving a CCL3 receptor antagonist reverses the myeloproliferation (but it isn’t clear to me if it reverses the leukemia once established)

As far as we know the cells developing into MML don’t contain mutant PTPN11. So it’s cancer by proxy. Obviously some changes (mutations, epigenetic changes) have have occurred in the leukemic cells, but at this point we don’t know what they are.

What is ICP27 trying to tell us? One of you could get a PhD if you figure it out !

It wouldn’t be the first time a viral protein led us to an important cellular mechanism. Consider what the polio virus taught us about the translation of mRNA into protein. It cleaves two components of eIF-4F (eukaryotic Initiation (of ribosome translation of mRNA into protein) Factor 4F totally shutting down synthesis of mRNAs with a cap on their 5′ end (which is most of them). Poliovirus proteins don’t have these caps so their proteins continue to be made.

Well this brings us to ICP27 (Infected Cell Protein 27) a product of the Herpes Simplex virus. You can read all about it in [ Proc. Natl. Acad. Sci. vol. 113 pp. 12256 – 12261 ’16 ]. ICP27 is essential for herpes virus infection. This work shows that it inhibits intron splicing (but in under 1% of cellular genes) and also promotes the use of alternative 5′ splice sites.

It also induces the expression of pre-mRNAS prematurely cleaved and polyAdenylated from cryptic polyAdenylation signals located in intron 1 or intron 2 of an amazing 1% of all cellular genes. These prematurely cleaved and polyAdenylated mRNA sometimes contain novel open reading frames (ORFs). They are typically intronless (they should be) and under 2 kiloBases long. They are expressed early during viral infection and efficiently exported to cytoplasm. The ICP27 targeted genes are GC rich (as are all Herpes simplex genes), contain cytosine rich sequences near the 5′ splice site.

The paper also showed that optimization of splice site sequences, or mutation of nearby cytosines eliminated ICP27 mediated splicing inhibition. Introduction of cytosine rich sequences to an ICP27 INsensitive splicing reporter conferred susceptibility to ICP27.

How is this going to help you get a PhD? Ask yourself. What are cryptic polyAdenylation signals doing in the first two introns in so many genes? It seems obvious (to me) that as well as the virus the cell is using them for some purpose. It isn’t hard to mutate something to the signal for polyadenylation AAUAAA. Interestingly cleavage doesn’t occur here, but 30 nucleotides or so downstream. The sequence occurs every 4^6 == 4096 nucleotides (if they’re random). I’m not sure what the total length of introns #1 and #2 are of our 20,000 or so protein coding genes, but someone should be able to find out and see if 200 occurrences of this sequence is more than would be expected by chance.

The plot thickens when the paper notes that “Over 200 genes are affected by ICP27. Over 30 (including PML, STING, TRAF6, PPP6C, MAP3K7, FBXw11, IFNAR2, NKFB1, RELA and CREBP are related to the immune pathway). Do you think the cell doesn’t use this pathway as well?

What about the existence of other viral (and cellular) proteins doing the same sort of thing (but on different introns perhaps). What are those novel open reading frames in the alternatively spliced mRNAs doing?

Fascinating stuff. Time to get busy if you’re an enterprising grad student, or young faculty member.

The proteasome branches out

The surface of a protein is not at all like a ball of yarn, even though they are both one long string. This has profound implications for the immune system. Look at any solved protein structure. The backbone bobs and weaves taking water hating (hydrophobic) amino acids into the center of the protein, and putting water loving (hydrophilic) amino acids on the surface. So even though the peptide backbone is continuous, only discontinuous patches of it are displayed on the protein surface.

Which is a big problem for the immune system which wants to recognize the surface of the protein (which is all it first gets to see with an invading bug). Now we know that foreign proteins are ingested by the cell, chopped up by the proteasome, and fragments loaded on to immune molecules (class I Major Histocompatibility Complex antigens) and displayed on the cell surface so the immune system can learn what it looks like and react to it. The peptides aren’t very long — under 11 or so amino acids, but they are continuous.

What if the really distinct part of the protein surface (e.g. the immunogen)  is made of two distinct patches from the backbone? A fascinating paper shows how the immune system might still recognize it. Chop the protein up into fragments by the proteasome, and then have the fragments from adjacent patches put back together. You know that any enzyme can be run in reverse, so if the proteasome can split peptide bonds apart it can also join them together.

This is exactly what was found in a recent paper — Science vol. 354 pp. 354 – 358 ’16. The small peptides (containing at most 11 amino acids) finding their way to the cell surface were analyzed in a technical tour de force. In aggregate they go by the fancy name of immunopeptidome. They found that the proteasome IS actually splicing peptide fragments together. This is called Proteasome Catalyzed Peptide Splicing (PCPS). The present work shows that it accounts for 1/3 of the class I immunopeptidome in terms of diversity and 1/4 in terms of abundance. One-third of self antigens are represented on the cell surface of the immune cell line they studied (GR-LCL the GR-lymphoblastoid cell line) ONLY by spliced peptides. The ordering of the spliced peptide was the same as the parent protein in only half. There was no preference for the length of the protein skipped by the splice.

The work has huge implications for immunology, not least autoimmune disease.

So today I wrote the author the following

Dr. Mishto

Terrific paper ! Do you have any evidence for the spliced peptides being spatially contiguous on the surface of the parent protein. Have you looked?

This makes a lot of sense, because the immune system should ‘want’ to recognize protein conformations as they exist in the living cell, rather than stretches of amino acid sequence in the parent protein. Also, with few exceptions the surface of a given protein in vivo is a collection of discontinuous peptide sequences of the parent protein. I’ve always wondered how the immune system did this, and perhaps your paper explains things.

Luysii

and got this back almost immediately

Dear Luysii

Interesting idea. We shall have a look for few examples where the crystallography structure or the parental protein is disclosed already.

regards

Michele

It doesn’t get any better than this. Tomorrow I will be exactly 78 years and 6 months old. It shows I can still think (on occasion).

Addendum 17 Nov ’16;  It looks as though proteins are fed into the central cavity of the proteasome as a completely denatured single strand.  See figure 5 of PNAS 113 pp 12991 -m12996 ’16.  The channel to get in appears quite narrow.

The butterfly effect in embryology

How the snake lost its legs. No, this isn’t a Just So story a la Rudyard Kipling, but a fascinating paper in Cell (vol. 167 pp. 598 – 600, 633 – 642 ’16 ). All it takes is a 17 nucleotide deletion in ZRS (Zone of polarizing activity Regulatory Sequence), an enhancer of gene expression involved in limb development. The enhancer is at least 1,300 nucleotides long (but I can’t find out just how long ZRS is). The deletion removes a binding site for a transcription factor (ETS) which turns on some limb development genes.

ZRS has long been known to be involved in limb development, and mutations distributed over 700 nucleotides are associated with a variety of human limb malformations. So the authors sequenced the enhancer in a variety of species (including many snakes) and found that only snakes had the deletion.

Then they put the snake ZRS into genetically engineered transgenic mice and found markedly shortened limbs. That was all it took. Reintroducing the missing 17 nucleotides into the transgenics restores normal limb development. Staggering what genetic technology is capable of.

Where does the butterfly effect come in? Because the enhancer is 1,000,000 nucleotides away from some of the genes it controls. If you were studying sequences around the genes it controls, you’d never find the deletion (until you’d run through a large number of grad students). Human biology (with limb malformations) told the authors where to look.

Straightened out 1,000,000 nucleotides is 3,200,000 Angstroms,or 320 microns (32 times the size of the average 10 micron nucleus). Remarkable how it finds its target. You might be interested in a series of posts which try to imagine these goings on at human scale — blowing up the nucleus so it fits in a football stadium with our double stranded DNA blown up to the size of linguini with a total total length of 2840 miles. Start here –https://luysii.wordpress.com/2010/03/22/the-cell-nucleus-and-its-dna-on-a-human-scale-i/

Two disconcerting papers

We all know that mutations cause cancer and that MRI lesions cause disability in multiple sclerosis. We do, don’t we? Maybe we don’t, say two papers out this October.

First: cancer. The number of mutations in stem cells from 3 organs (liver, colon, small intestine) was determined in biopsy samples from 19 people ranging in age 3 to 87 [ Nature vol. 538 pp. 260 – 264 ’16 ].th How did they get stem cells? An in vitro system was sued to expand single stem cells into epithelial organoids, and then the whole genome was sequenced of each. Some 45 organoids were used. Some 79,790 heterozygous clonal mutations were found. They then plotted the number of mutations vs. the age of the patient. When you have a spread in patient ages (which they did) you can calculate a tissue mutation rate for its stem cells. What is remarkable, is that all 3 tissues had the same mutation rate — about 40 mutations per year. Not bad. That’s only 4,000 if you live to 100 in your 3.2 BILLION nucleotide genome.

This is so  remarkable because the incidence of cancer is wildly different in the 3 tissues, so if mutations occurring randomly cause cancer, all 3 tissues should have the same cancer incidence (and there is much less liver cancer than gut cancer).

Of course there’s a hooker. The numbers are quite small, only 9 organoids from liver with a relatively small age range spanning only 25 years. There were more organoids from colon and small and the age ranges was wider but, clearly, the work needs o be replicated with a lot more samples. However, a look at figure one shows that the slope of the plot of mutation number vs. age is quite similar.

Second: Multiple sclerosis. First, some ancient history. I started in neurology before there were CAT scans and MRIs. All we had to evaluate the MS patient was the neurologic exam. So we’d see if new neurologic signs had developed, or the old ones worsened. There were all sorts of clinical staging scores and indices. Not terribly objective, but at least they measured function which is what physician and patient cared about the most.

The MRI revolutionized both diagnosis and our understanding of MS. We quickly found that even when the exam remained constant, that new lesions appeared and disappeared on the MRI totally silent to both patient and physician. I used to say that prior to MRI neurologists managed patients the way a hematologist would manage leukemics without blood counts, by looking at them to see how pale they were.

In general the more lesions that remained fixed, the worse shape the patient was in. So new drugs against MS could easily be evaluated without waiting years for the clinical exam to change, if a given drug just stopped lesions from appearing — stability was assumed to ensue (or at least it was when I retired almost exactly 4 presidential elections ago).

Enter Laquinimod [ Proc. Natl. Acad. Sci. vol. 113 pp. E6145 – E6152 ’16 ] which has a much greater beneficial effect on disability progression (e.g. less) than it does on clinical relapse rate (also less) and lesion appearance rate on MRI (also less). So again there is a dissociation between the MRI findings and the patient’s clinical status. Here are references to relevant papers — which I’ve not read —
Comi G, et al.; ALLEGRO Study Group (2012) Placebo-controlled trial of oral laquini- mod for multiple sclerosis. N Engl J Med 366(11):1000–1009.

Filippi M, et al.; ALLEGRO Study Group (2014) Placebo-controlled trial of oral laqui- nimod in multiple sclerosis: MRI evidence of an effect on brain tissue damage. J Neurol Neurosurg Psychiatry 85(8):851–858.

Vollmer TL, et al.; BRAVO Study Group (2014) A randomized placebo-controlled phase III trial of oral laquinimod for multiple sclerosis. J Neurol 261(4):773–783.

It is well known that there are different kinds of lesions in MS (some destroying axons, others just stripping off their myelin). Since I’ve left the field, I don’t know if MRI can distinguish the two types, and whether this was looked at.

The disconcerting thing about this paper, is that we may have given up on drugs which would  clinically help patients (rather than a biological marker) because they didn’t help the MRI ! ! !

Hillary’s fainting spell

And I thought I’d retired as a neurologist. What is there to say about the video that shows Hillary Clinton being held up by a woman on her left, later by others, and then collapsing sufficiently that her head is at most 3 feet from the pavement in one frame. You don’t have to go to medical school to call this a fainting spell.

As to what caused the episode, we can only speculate. I see no reason to trust what the campaign is putting out, that she had ‘pneumonia’ for the previous two days. Since I’ve already gone on record that she had a stroke in December 2012 ( https://luysii.wordpress.com/2016/08/24/hillary-clintons-stroke-in-2012/ ), not due to head trauma sustained in what was said to another fainting spell, people have asked me what the event could be neurologically.

But I’m a neurologist not an internist, so I talked to a very smart one for his take.

“Somewhat oddly, her campaign now reports that pneumonia had been “diagnosed” as of two days before her collapse. However, she was not acting as if she is infectious, going out into crowds and getting close to small children. The Clintons are known for lawyerly parsing of phrases carefully, so it may matter what the meaning of pneumonia “is.” Therein may lie a clue which puts the chronic non-productive cough of many months duration, along with apparent decreased stamina and a carefully tuned and truncated schedule over a similar period into perspective.

Chronic lung disease, particularly a mildly progressive idiopathic pulmonary fibrosis/interstitial pneumonia could fit that picture. It would also be technically true as a diagnosis. Whatever pulmonary condition she has does not appear to be acute.”

He also had an interesting observation on the way the faint was handled. “There must be some chronic known condition, as she has two attendants with her now at all times–large black male and heavyset white woman. Her collapse was handled as if it were familiar territory. Hustling a woman of her age into a van and driving to her daughter’s apartment is a highly unusual way to handle such a loss of consciousness in a 68-year old woman, particularly when there had to be a number of emergency vehicles loaded with EMT’s on the scene and well as several hospitals at least as close as her daughter’s apartment.” To which a friend noted that the secret service is trained to react immediately to situations like this, going through dry runs of all sorts of eventualities etc. etc.

Taking her to her daughter’s apartment is quite strange, given the way the secret service was acting 40 or so years ago. Back then, a neurosurgeon in Billings Montana told me that the secret service had called him up and asked him to be available in the coming weekend as the president would be visiting Yellowstone, a mere 140 miles away by the nearest road. It seems likely that some hospital close by was on alert that Hillary was in the neighborhood.

The internist has been watching her a lot more closely than I have and noted the following “There were shots a month or so ago of her needing help to get up outdoor stairs and also needing a small step-stool to get up into a Secret Service Suburban. My wife and I hop in and out of a Yukon and do not need any step device (they are of comparable age). After a photo of her doing that was published, she started getting in and out of vehicles on the side away from cameras and was also switched to a taller van with a step mounted on the vehicle. In February, press was forbidden by her staff from filming her climbing the stairs to board her private jet.” He wondered if she could have something like limb girdle dystrophy — watching her walk and stand during the upcoming debates will be helpful for determining that.

Finally he noted — “There are also a number of cardiovascular causes (transient arrhythmia for starters) as well as pulmonary microemboli which can cause collapse like that.”

Now for the neurologic possibilities.

There are peculiar videos purporting to show Hillary having a ‘seizure’ during a press conference. They look doctored to me. She appears to be compulsively laughing. Such seizures are called gelastic epilepsy. They are rare but I’ve seen them. They arise from the hypothalamus and the temporal lobes. Nothing in the current video is suggestive of a seizure. Loss of consciousness at this age rarely is due to a seizure. Cardiovascular causes are far more likely.

Another possible cause is a brainstem transient ischemic attack (TIA), since we have been told that the clot of 2012 was in a draining sinus of the posterior fossa (we have no pictures of any sort from that episode). Recovery in 90 minutes is consistent with either syncope or TIA.

The final possibility is that the event is a warning of an impending second stroke. If you look again at the post about the events of 2012, you’ll see that I speculated that the ‘faint’ occuring in the week of 9 December could have been a transient warning of the cerebral venous thrombosis she suffered that month. I don’t think this likely, but when I examined for the Neurology boards, fellow examiners always wanted to see how many possibilities for diagnoses the candidates can muster.

So what do I think it was? A fainting spell (syncope if you want to be impressive). Her blood pressure dropped for some reason or other, the brainstem which maintains alertness didn’t get enough fresh blood and she passed out nearly. The people with her did NOT help by keeping her erect, which kept the brainstem from getting the blood (and the oxygen it delivers) it needed. In fact holding someone up who has fainted is the perfect crime, as the brain deprived of oxygen long enough begins to die, and no marks will be found on the body.

Why out of the thousands there, on a warm but not excessively hot day, she was the only one to pass out can only be the subject of speculation until more details are forthcoming. The health of a possible future president is simply too important not to speculate about.

What neuropharmacology can’t tell us about opiates and addiction

A friend’s wife had some painful surgery and is trying to get by with as little opiates as possible, being very worried about becoming an addict, something quite reasonable if all she had to go on was the popular press with lurid stories of hapless innocents being turned into addicts by evil physicians overprescribing opiates (it’s the current day Reefer Madness story). Fortunately her surgeon wisely told her that her chances of this happening were quite low, since she’d made it past 50 with no dependency problems whatsoever. Here’s why he’s right and why neuropharmacology can’t tell us everything we want to know about opiates and addiction.

Back in the day, disc surgery required general anesthesia, dissection of the back muscles down to the spine, sometimes chipping away at the bones of the spine to remove a bone spur (osteophyte) and/or removal of the offending herniated intervertebral disc. This meant a hospital stay (unlike my ophthalmologist who had a microdiscectomy as an outpatient a few years ago). This was the era of the discovery of the protein receptor for morphine and other opiates, and we were all hopeful that this would lead to the development of a nonAddicting opiate (narcotic). Spoiler alert — it hasn’t happened and likely won’t.

Often, I was the neurologist who diagnosed the disc and told the surgeon where it was likely to be found (this was in the preCT and later the preMRI era). I’d developed a relationship with most of those I’d referred for surgery (since it was never recommended, without a trial of rest — unless there were compelling reasons not to — trouble controlling bowels and bladder, progressive weakness etc. etc.). I was their doc while they tried to heal on their own.

So post-operatively I’d always stop by to see how the surgery had worked for them. All were on a narcotic (usually Demerol back then) as even if the source of their preoperative pain had been relieved, just getting to the problem had to cause significant pain (see above).

If the original pain was much improved (as it usually was), I’d ask them how they liked the way the demerol made them feel. There were two types of responses.

#1 I hate feeling like this. I don’t care about anything. I’m just floating, and feel rather dopey. I’m used to being in control.

#2 I love it ! ! ! ! I don’t have a care in the world. All my troubles are a million miles away as I just float along.

Love it or hate it, both groups are describing the same feeling. Neuropharmacology can help to tell us why opiates produce this feeling, but it can’t tell us why some like it (about 5%) and the majority (95%) do not. This clearly is the province of psychology and psychiatry. It’s the Cartesian dualism between flesh (opiate receptor) and spirit (whether you like what it does). It also shows the limitation of purely physical reductionism of the way we react to physical events.

The phenomenon of a small percentage of people becoming addicted to a mind altering substance is general and is not confined to one class of drug. We were told never to prescribe chronic benzodiazepines (valium, etc. etc.) to a recovered alcoholic. People who get hooked on one thing are very likely to get hooked on another.

I realize that some of this could be criticized as blaming the victim, but so be it. Medical facts are just that, like what they say or not.

Addendum 11 Sep ’16 — I’m not saying that you won’t become physically dependent on opiates if you get them long enough and at high enough doses. We all would. Even if this happened to you. When you no longer needed them for pain and went through medically supervised withdrawal, you wouldn’t crave them, and do crazy things to get them (e.g. you were physically dependent but never addicted to them — it is important to make the distinction).

Example — when I was in the service ’68 – ’70, we had half a million men in Vietnam. Everyone I’ve talked to who was over there says that heroin use among the troops was 25 – 50% (high grade stuff from Thailand was readily available). As soon as they got back to the states, the vast majority gave them up (and with minimal withdrawal requiring my attention – I think I saw one convulsion due to withdrawal).

The plural of anecdote is NOT data (in medicine at least)

The previous post (https://luysii.wordpress.com/2016/08/22/the-plural-of-anecdote-is-data/) showed that collecting a bunch of small studies (anecdotes) was extremely helpful in seeing the larger picture.

In medicine exactly the opposite occurs. The only way to find out if something works is to do a controlled study. [ Science vol. 297 p 325 ’02 ] There were over 50 observational studies showing benefits for hormone replacement in menopausal women.. Observational studies are basically anecdotes. During the planning study for the Women’s Health Initiative (WHI), some argued that it was unethical to deny some women hormones and give them a placebo. The reason HERS (Heart and Estrogen/Progesterone Replacement Study) was even done was that Wyeth couldn’t get the FDA to approve hormone replacement therapy as a treatment to prevent cardiovascular disease, so they funded HERS to prove their case. Most readers of this have probably read all sorts of bitching about the slowness of the FDA in approving drugs but in this case they did the female populace a huge favor.

As you probably know, the results of hormone replacement in both studies were a disaster (the HERS trial was stopped at 5.2 years after because of increased breast cancer in the treated group). There was also an increased risk of coronary heart disease by 30%, stroke by 41%. At least hip fracture was reduced. Fortunately, even though these were bad outcomes, they were infrequent,(but more frequent in the treated group).

These weren’t lab animals, but someone’s wife and/or mother.

How could they have been so far off? Before all this started, estrogen users were different from nonUsers in several respects — first they were doing something about their health, and clearly had more medical supervision. In addition they were better educated, smoked less and of a higher social class, all of which tend to diminish morbidity and mortality.

Something very similar happened in my field of neurology (not that vascular disease doesn’t severely impact the nervous system). There was a very logical operation to improve cerebral circulation — the pulse just in front of your ear is the superficial temporal artery, a branch of the common carotid after it splits in the internal carotid which goes into the skull and supplies blood to the brain, and the external carotid. If the internal carotid is blocked and the common carotid artery is open, then open the skull and hook (anastomose) the superficial temporal artery to a vessel on the surface of the brain, bypassing the blockage. If you want to know how it is done see — http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1150876/.

There was all sorts of anecdotal evidence of miraculous recovery from stroke. The neurosurgeons and vascular surgeons mounted a wonderful controlled study of the surgery even though many thought it was unnecessary — so 1377 patients were prospectively randomized to have the surgery or medical management. The surgery wasn’t better than medical management N Engl J Med 1985; 313:1191-1200November 7, 1985DOI: 10.1056/NEJM198511073131904, so the procedure was abandoned.