Tag Archives: Nick Cozzarelli

The viruses in our brains

PNMA2 (ParaNeoplastic antigen MA2) is a protein initially found as the target of the immune response (autoantibodies) producing a nasty dementing neurologic disease (Paraneoplastic encephalitis).  The PNMA2 protein is exclusively expressed in neurons which implies that neurons are using it for something.   This is teleological thinking, usually looked down on, but always needed in molecular biology and cellular physiology.

What PNMA2 does is amazing.  It forms icosahedral viral capsids which are released from cells (in culture) as nonEnveloped capsids.  It isn’t clear if this normally happens in our  brains.    Probably it doesn’t, and when the capsid somehow gets out of the producing cell or neuron immunological hell breaks loose and autoimmune encephalitis is the result.

PNMA2 is derived from one of the long terminal repeat retrotransposons (LTR retrotransposons), viral remnants that make up 8% of the human genome (https://en.wikipedia.org/wiki/LTR_retrotransposon). This explains why it makes particles that look like viruses.  Such particles can contain RNA, so big pharma is interested in them as a way of delivering mRNA drugs.

Totally off topic but yesterday I read a paper about E. Coli DNA gyrase, an amazing enzyme which untangles DNA ( Science vol. 384 pp. 227 – 232 ’24 ).

Here is what it does.   If you’ve got some venetian blinds in your home twist it 20 or so times (keeping the ends fixed, and you have the DNA double helix, with two strands winding around each other.  Now to read or copy a single strand, you must grab both strands where you want this to happen  and pull them apart keeping the ends of the venetian blind fixed.  This immediately increases the coiling elsewhere. Since there are only 10 nucleotides/turn of the double helix, copying a gene for a 100 amino acid protein means you are removing 33 twists from the separated strands (and producing new ones elsewhere).   The cords of the venetian blind quickly become a tangled mess when this happens.  This is where DNA gyrase comes in.  It cuts both strands of the DNA double helix, holding on to the cut ends, and slides an intact double helix of the twisted DNA through the cut.   Sounds fantastic doesn’t it?  Hard to see how evolution could come up with something like this but it did.

The paper contains the following passage toward the end

A second model based on a sign-inversion reaction wassuggested to describe introduction of ()SC by this enzyme (28). This model proposed that the enzyme binds to a positive crossover followedby a DNA strand passage through a DNA double-strand break that results in a sign inversion.”

(28) is 28. P. O. Brown, N. R. Cozzarelli,Science206, 10811083 (1979).

The paper is 45 years old and has now been shown to be correct.  N. R.  Cozzarelli is my late good friend and Princeton classmate Nick, and it is very nice to see him honored here.

A few words about Nick.  Although Princeton was full of rich kids, they still had the brains to take in someone like Nick whose father was an immigrant shoemaker in Jersey City.  Nick worked his way through Princeton waiting on tables in commons (where all Freshmen ate).  I can still see the time that some rich preppie jerk gave him a hard time about the service.

Nick got his PhD at Harvard and later became a professor at Berkeley where he did his great work.  Nick later edited the Proceedings of the National Academy of Sciences (USA) for 10 years before his very untimely death over 20 years ago from Burkitt’s lymphoma.  R. I. P. Nick.

Brilliant structural work on the Arp2/3 complex with actin filaments and why it makes me depressed

The Arp2/3 complex of 5 proteins forms side branches on existing actin filaments.  The following paper shows its beautiful structure along with movies.  Have a look — it’s open access. https://www.pnas.org/doi/10.1073/pnas.2202723119.

Why should it make me depressed? Because I could spend the next week studying all the ins and outs of the structure and how it works without looking at anything else.  Similar cryoEM studies of other multiprotein machines are coming out which will take similar amounts of time.  Understanding how single enzymes work is much simpler, although similarly elegant — see Cozzarelli’s early work on topoisomerase.

So I’m depressed because I’ll never understand them to the depth I understand enzymes, DNA, RNA etc. etc.

Also the complexity and elegance of these machines brings back my old worries about how they could possibly have arisen simply by chance with selection acting on them.  So I plan to republish a series of old posts about the improbability of our existence, and the possibility of a creator, which was enough to me get thrown off Nature Chemistry as a blogger.

Enough whining.

Here is why the Arp2/3 complex is interesting.  Actin filaments are long (1,000 – 20,000 Angstroms and thin (70 Angstroms).  It you want to move a cell forward by having them grow toward its leading edge, growing actin filaments would puncture the membrane like a bunch of needles, hence the need for side branches, making actin filaments a brush-like mesh which could push the membrane forward as it grows.

The Arp2/3 complex has a molecular mass of 225 kiloDaltons, or probably 2,250 amino acids or 16 thousand atoms.

Arp2 stands for actin related protein 2, something quite similar to the normal actin monomer so it can sneak into the filament. So can Arp3.  The other 5 proteins grab actin monomers and start them polymerizing as a branch.

But even this isn’t enough, as Arp2/3 is intrinsically inactive and multiple classes of nucleation promoting factors (NPFs) are needed to stimulate it.  One such NPF family is the WASP proteins (for Wiskott Aldrich Syndrome Protein) mutations of which cause the syndrome characterized by hereditary thrombocytopenia, eczema and frequent infections.

The paper’s pictures do not include WASP, just the 7 proteins of the complex snuggling up to an actin filament.

In the complex the Arps are in a twisted conformation, in which they resemble actin monomers rather than filamentous actin subunits which have a flattened conformation.  After activation arp2 and arp3 mimic the arrangement of two consecutive subunits along the short pitch helical axis of an actin filament and each arp transitions from a twisted (monomerLike) to a flattened (filamentLike) conformation.

So look at the pictures and the movies and enjoy the elegance of the work of the Blind Watchmaker (if such a thing exists).

A letter to the PNAS editor which will never be published

“Starting out the year 2021 by looking back at the year 2020 might seem like an exercise in masochism, given the horrific loss of life, the untold economic hardships, the resurgence of white supremacy across the country

As a good friend and college and grad school classmate of Nick Cozzarelli who edited PNAS for 10 years, I find this statement by the current PNAS editor — May Berenbaum, unhelpful, unscientific and frankly appalling. Had Nick not been taken from us far too soon in 2006 by Burkitt’s lymphoma, he’d likely be editing PNAS still. Does the editor’s statement rank with any of Nick’s work on DNA gyrase or DNA topology?

It is an exercise in the religion of political correctness, showing adherence to its current catechism, for political correctness and wokeness is nothing but a religion for the secular.  In our town expressions of faith abound on front lawns complete with statues of the virgin and signs proclaiming “we believe in science’. There really is no difference.

How a hack like Berenbaum got to be editor is beyond me, given the women scientists of great stature around (Doudna, Ghez, Randall).

Is Nick — https://en.wikipedia.org/wiki/Nicholas_R._Cozzarelli — an example of white supremacy? Nick’s father was an immigrant shoemaker from Jersey City and Nick worked his way through Princeton waiting on tables in commons.