Tag Archives: actin

Brilliant structural work on the Arp2/3 complex with actin filaments and why it makes me depressed

The Arp2/3 complex of 5 proteins forms side branches on existing actin filaments.  The following paper shows its beautiful structure along with movies.  Have a look — it’s open access. https://www.pnas.org/doi/10.1073/pnas.2202723119.

Why should it make me depressed? Because I could spend the next week studying all the ins and outs of the structure and how it works without looking at anything else.  Similar cryoEM studies of other multiprotein machines are coming out which will take similar amounts of time.  Understanding how single enzymes work is much simpler, although similarly elegant — see Cozzarelli’s early work on topoisomerase.

So I’m depressed because I’ll never understand them to the depth I understand enzymes, DNA, RNA etc. etc.

Also the complexity and elegance of these machines brings back my old worries about how they could possibly have arisen simply by chance with selection acting on them.  So I plan to republish a series of old posts about the improbability of our existence, and the possibility of a creator, which was enough to me get thrown off Nature Chemistry as a blogger.

Enough whining.

Here is why the Arp2/3 complex is interesting.  Actin filaments are long (1,000 – 20,000 Angstroms and thin (70 Angstroms).  It you want to move a cell forward by having them grow toward its leading edge, growing actin filaments would puncture the membrane like a bunch of needles, hence the need for side branches, making actin filaments a brush-like mesh which could push the membrane forward as it grows.

The Arp2/3 complex has a molecular mass of 225 kiloDaltons, or probably 2,250 amino acids or 16 thousand atoms.

Arp2 stands for actin related protein 2, something quite similar to the normal actin monomer so it can sneak into the filament. So can Arp3.  The other 5 proteins grab actin monomers and start them polymerizing as a branch.

But even this isn’t enough, as Arp2/3 is intrinsically inactive and multiple classes of nucleation promoting factors (NPFs) are needed to stimulate it.  One such NPF family is the WASP proteins (for Wiskott Aldrich Syndrome Protein) mutations of which cause the syndrome characterized by hereditary thrombocytopenia, eczema and frequent infections.

The paper’s pictures do not include WASP, just the 7 proteins of the complex snuggling up to an actin filament.

In the complex the Arps are in a twisted conformation, in which they resemble actin monomers rather than filamentous actin subunits which have a flattened conformation.  After activation arp2 and arp3 mimic the arrangement of two consecutive subunits along the short pitch helical axis of an actin filament and each arp transitions from a twisted (monomerLike) to a flattened (filamentLike) conformation.

So look at the pictures and the movies and enjoy the elegance of the work of the Blind Watchmaker (if such a thing exists).

More moonlighting

Well we used to think we understood what ion channels in the cell membrane did and how they worked. To a significant extent we do know how they conduct ions, permitting some and keeping others out in response to changes in membrane potential and neurotransmitters. It’s when they start doing other things that we begin to realize that we’re not in Kansas anymore.

Abnormal binding of one protein (filamin A) to one of the classic ion channels (the alpha7 nicotinic cholinergic receptor) may actually lead to a therapy for Alzheimer’s disease — for details please see — https://luysii.wordpress.com/2021/03/25/the-science-behind-cassava-sciences-sava/

The Kv3.3 voltage gating potassium channel is widely expressed in the brain.  Large amounts are found neurons concerned with sound, where firing rates are high.  Kv3.3 repolarizes them (and quickly) so they can fire again in response to high frequency stimuli (e.g. sound).  Kv3.3 is also found in the cerebellum and a mutation Glycine #529 –> Arginine is associated with a hereditary disease causing incoordination (type 13 spinocerebellar ataxia or SCA13 to be exact).

Amazingly the mutant conducts potassium ions quite normally.  The mutation (G529R) causes the channel not to bind to something called Arp2/3 with the result that actin (a muscle protein but found in just about every cell in the body) doesn’t form the network it usually does  at the synapse.  Synapses don’t work normally when this happens. 

Why abnormally functioning synapses isn’t lethal is anyone’s guess, as is why the mutation only affects the cerebellum.  So it’s another function of an ion channel, completely unrelated to its ability to conduct ions (e.g. moonlighting). 

Are the inclusions found in neurologic disease attempts at defense rather then the cause?

Thinking about pathologic changes in neurologic disease has been simplistic in the extreme.  Intially both senile plaques and neurofibrillary tangles were assumed to be causative for Alzheimer’s.  However there are 3 possible explanations for any microscopic change seen in any disease.  The first is that they are causative (the initial assumption).  The second is that they are a pile of spent bullets, which the neuron uses to defend itself against the real killer.  The third is they are tombstones, the final emanations of a dying cell.

A fascinating recent paper [ Neuron vol. 97 pp. 3 – 4, 108 – 124 ’18 ] http://www.cell.com/neuron/pdf/S0896-6273(17)31089-9.pdf gives strong evidence that some inclusions can be defensive rather than toxic.  It contains the following;

“In these studies, we found that formation of large inclusions was correlated with protection from a-synuclein toxicity”

The paper is likely to be a landmark because it ties two neurologic diseases (Parkinsonism and Alzheimer’s) together by showing that they may due to toxicity produced by single mechanism — inhibition of mitochondrial function.

Basically, the paper says that overproduction of alpha synuclein (the major component of the Lewy body inclusion of Parkinsonism) and tau (the major component of the neurofibrillary tangle of Alzheimer’s disease) produce death and destruction by interfering with mitochondria.  The mechanism is mislocalization of a protein called Drp1 which is important in mitochondrial function (it’s required for mitochondrial fission).

Actin isn’t just found in muscle, but is part of the cytoskeleton of every cell.  Alpha-synuclein is held to alter actin dynamics by binding to another protein called spectrin (which also binds to actin).  The net effect is to mislocalize Drp1 so it doesn’t bind to mitochondria where it is needed.  It isn’t clear to me from reading the paper, just where the Drp1 actually goes.

In any event overexpressing spectrin causes the alpha-synuclein to bind to it forming inclusions and protecting the cells.

There is a similar mechanism proposed for tau, and co-expressing alpha synuclein with Tau significantly enhances the toxicity of both models of tau toxicity which implies that they work by a common mechanism.

Grains of salt are required because the organism used for the model is the humble fruitfly (Drosophila).