Tag Archives: Lewy Body

Kinetic traps and life

“It is well known that the thermodynamically stable state of proteins in a crowded environment is insoluble fibrils” [ Proc. Natl. Acad. Sci. vol. 119 pp. e2122078119 ’22 ].  However even under ideal conditions the time scale for their formation is hours to days [ Nat. Rev. Mol. Cell Biol. 15, 384–396 (2014) ].  Hopefully it’s even longer (decades) for senile plaques (abeta) neurofibrils (tau) and Lewy bodies (alpha-synuclein) to form.  The fact that equilibrium takes such a long time to reach, allows rapid synthesis and degradation of proteins to avoid their aggregation.  So we live because our proteins are trapped in a less the equilibrium (metastable) state by kinetics — e.g. a kinetic trap.

We now understand what amyloid actually is

Lately we have received an embarrassment of riches about amyloid and the diseases it causes.  I’ll start with the latest — the structure of TDP amyloid.

I must say it is a pleasure to get back to chemistry and away from the pandemic, however briefly.  So relax and prepare to enjoy some great chemistry and protein structure.

TDP43 (you don’t to know what the acronym stands for) is a protein which binds to RNA (among other things).  It also forms aggregates, and some 50 mutations are known producing FrontoTemporal  Dementia (FTD) and/or Amyotrophic Lateral Dementia (ALS).  I saw a case as a resident (before things were worked out) and knew something was screwy because while ALS is a horrible disease, patients are clear to the end (witness Stephen Hawking) and my patient was clearly dementing.

Mutations in TDP43 occur in 5% of familial ALS.  More to the point cytoplasmic aggregates of TDP43 occur in 95% of sporadic cases of ALS (no mutations), so neurologists have been fascinated with TDP43 for years.

Back before we knew much about the structure of amyloid, it was characterized by the dyes that would bind to it (Congo Red, thioflavin etc.) and birefringence (see below).  None of this is true for the aggregates of TDP43.

Well we now know what the structure of amyloid is.  You simply can’t do better than  Cell vol. 184 pp. 4857 – 4873 ’21 — but it might be behind a paywall.

So here’s the skinny about what amyloid actually is —

 

It is a significantly long polypeptide chain  flattening  out into a 4.8 Angstrom thick sheet, essentially living in 2 dimensions.  Thousands of sheets then pile on top of each other forming amyloid.  So amyloid is not a particular protein, but a type of conformation a protein can assume (like the alpha helices, beta pleated sheets etc. etc. ).

The structure also explained why planar molecules like Congo Red bind to amyloid (it slips between the sheets).   Or at least that’s what I thought.

 

Enter Nature vol. 601 pp. 29 – 30, 139 – 143 ’22 showing that some 79 amino acids of the 414 amino acids of TDP43 flatten out into single sheet in the aggregates, with the sheets piling on top of each other.  If that isn’t amyloid, what is?

 

Where are the beta strands producing birefringence if this is amyloid.  In fact where is the birefringence? (see below). The paper says that there are 10 beta strands in the 79 amino acids, but they are short with only two of them containing more than 3 amino acids (I guess they can see beta strands by measuring backbone angles a la Ramachandran plots).  The high number of glycine mediated turns prevents beta sheets from stacking next to each other precluding the crossBeta  structure (and birefringence).

 

Why doesn’t Congo Red bind?  My idea about how it binds to other amyloids (slipping between the sheets) clearly is incorrect.

 

There are all sorts of fascinating points about the amyloid of TDP43.  The filaments derived from patients are stable to heating to 65 C.   The structure of the TDP43 fibrils derived from patients with FTD/ALS are quite different in structure from synthetic filaments made from parts of TDP43, so possibly a lot of work will have to be done again.

 

Here is some more detail on amyloid structure:

 

So start with NH – CO – CHR.  NH  CO and C in the structure all lie in the same plane (the H and the side chain of the amino acid < R >  project out of the plane).
Here’s a bit of elaboration for those of you whose organic chemistry is a distant memory.  The carbon in the carbonyl bond (CO) has 3 bonding orbitals in one plane 120 degrees apart, with the 4th orbital perpendicular to the plane — this is called sp2 hybridization.  The nitrogen can also be hybridized to sp2.  This lets the pair of electrons above the plane roam around moving toward the carbon.  Why is this good?  Because any time you let electrons roam around you increase their entropy (S) and anything increasing entropy lowers their free energy (F)which is given by the formula F = H – TS where H is enthalpy (a measure of bond strength, and T is the absolute temperature in Kelvin.

 

So N and CO are in one plane, and so are the bonds from  N and C to the adacent atoms (C in both cases).

 

You can fit the plane atoms into a  rectangle 4.8 Angstroms high.  Well that’s one 2 dimensional rectangle, but the peptide bond between NH and CO in adjacent rectangles allows you to tack NH – CO – C s together while keeping them in a 3 dimensional parallelopiped 4.8 Angstroms high

 

Notice that in the rectangle the NH and CO bonds are projecting toward the top and bottom of the rectangle, which means that in each plane  NH – CO – CHR s, the NH and CO are pointing out of the 2 dimensional plane (and in opposite directions to boot). This is unlike protein structure in which the backbone NHs and COs hydrogen bond to each other.  There is nothing in this structure for them to bond to

 

What they do is hydrogen bond to another 3 dimensional parallelopiped (call it a sheet, but keep in mind that this is NOT the beta sheet you know about from the 3 dimensional structures of proteins we’ve had for years).
So thousands of sheets stacked together form the amyloid fibril.

 

Where does the 9 Angstrom reflection of cross beta (and birefringence) come from?  Consider the  [ NH – CHR – CO ]  backbone as it lies in the 4.8  thick plane (Having studied proteins structure since entering med school in ’62, I never thought such a thing would even be possible ! ).  It curves around like a snake lying flat.  Where are the side chains?  They are in the 4.8 thick plane, separating parts of the meandering backbone from each other — by an average of 9 Angstroms.
Here is an excellent picture of the Alzheimer culprit — the aBeta42 peptide as it forms the amyloid of the senile plaque
You can see the meandering backbone and the side chains keeping the backbone apart.

Then Nature [ vol. 598,  pp. 359 – 363 ’21] blows the field wide open, finding 19 different conformations of tau in clinically distinct diseases. Each clinical disease appears to be associated with a distinct polymorphism.  This is also true for the polymorphisms of alpha-synuclein, with distinct conformations being seen in each of Parkinsonism, multiple system atrophy and Lewy body dementia.

In none of the above diseases is there a mutation (change in amino acid sequence) in the protein.

Henry J. Heinz claimed to have 57 varieties of pickles in 1896, but Cell [ vol. 184 pp. 4857 – 4873 ’21  ] Page 4862 claims that 24 amyloid polymorphs of alpha-synuclein have been found and structurally characterized.  Recall that alpha-synuclein amyloid is the principal component of the Lewy body of Parkinsonism  and Lewy Body disese

How did they get the 24 different conformations?  They incubated the protein under different conditions (e.g. different salt concentrations, different alpha-synuclein concentrations, different salts).

Why is this incredibly good news? 

Because it moves us past amyloid itself, to the conditions which cause amyloid to form.  Certainly, removing amyloid or attacking it hasn’t resulted in any clinical benefit for the Alzheimer patient despite billions being spent by Big Pharma to do so.

We will start to study the ‘root causes’ of amyloid formation.   The amino acid sequence of each protein is identical despite the different conformations of the chain in the amyloid. Clearly the causes must be different for each of the different polymorphs of the protein.  This just has to be true.

A possible new way to attack Parkinson’s disease

Alpha-synuclein is the main component of the Lewy body of Parkinson’s disease.  It contains 140 amino acids, and is ‘natively unfolded’ in that it has no apparent ordered secondary structure (alpha helices, beta pleated sheets) detectable by a variety of methods — far ultraviolet circular dichroism, Fourier transform infrared spectroscopy or NMR spectroscopy. When the protein binds to artificial membranes half of it forms alpha helices.   Amazingly, after a huge amount of work we don’t know what alpha-Synuclein actually does.  Knockouts have only minor CNS abnormalities.

However, alpha synuclein forms fibrils which bind to cell surface receptors with internalization and transmission to other cells, just like prions.   Two such receptors for alpha-synuclein fibrils are Lymphocyte Activation Gene E (LAG3) and Amyloid PrecursorLike Protein 1 (ALPL1).

LAG3 has 4 immunoglobulin like domains (D1 – D4).  It uses D1 to capture the carboxy terminus which is exposed and concentrated on the surface of the alpha-synuclein fibrils.

Interestingly the monomers are said to adopt a self-shielded conformation which impedes the exposure of the carboxy terminus.  Phosphorylation of serine #129 enhances the binding of alpha-synuclein preformed fibrils to LAG3 and APLP1.  So the carboxy terminus of alpha-synuclein is a promising traget to block Parkinson’s disease progression.

How flat can a 100 amino acid protein be?

Alpha-synuclein is of interest to the neurologist because several mutations cause Parkinson’s disease or Lewy Body dementia.  The protein accumulates in the Lewy Bodies of these diseases.  These are concentric hyaline inclusions over 15 microns in diameter found in pigmented brain stem nuclei (substantia nigra, locus coeruleus).

The protein contains 140 amino acids.  It is ‘natively unfolded’ meaning that it has no ordered secondary structure (alpha helix, beta sheet).  No one is sure what it does.  Mouse knockouts are normal, so the mutations must produce something new.

Alpha-synuclein can form amyloid fibrils, which are basically stacks of pancakes made of flattened segments of proteins one on top of the other.

Would you believe that the 100 amino terminal amino acids of alpha-synuclein can form an absolutely flat structure.  Well it does and there are pictures to prove it in PNAS vol. 117 pp. 20305 – 20315 ’20.  Here’s a link if you or your institution has a subscription — https://www.pnas.org/content/pnas/117/33/20305.full.pdf.

This isn’t the usual alpha-synuclein, as it was chemically synthesized with phosphorylated tyrosine at amino acid #39.  Who would have ever predicted that 100 amino acids could form a structure like this?  I wouldn’t. The structure was determined by cryoEM and all the work was done in China.  Very state of the art world class work.  Bravo.

Amyloid

Amyloid goes way back, and scientific writing about has had various zigs and zags starting with Virchow (1821 – 1902) who named it because he thought it was made out of sugar.  For a long time it was defined by the way it looks under the microscope being birefringent when stained with Congo red (which came out 100 years ago,  long before we knew much about protein structure (Pauling didn’t propose the alpha helix until 1951).

Birefringence itself is interesting.  Light moves at different speeds as it moves through materials — which is why your legs look funny when you stand in shallow water.  This is called the refractive index.   Birefringent materials have two different refractive indexes depending on the orientation (polarization) of the light looking at it.  So when amyloid present in fixed tissue on a slide, you see beautiful colors — for pictures and much more please see — https://onlinelibrary.wiley.com/doi/full/10.1111/iep.12330

So there has been a lot of confusion about what amyloid is and isn’t and even the exemplary Derek Lowe got it wrong in a recent post of his

“It needs to be noted that tau is not amyloid, and the TauRx’s drug has failed in the clinic in an Alzheimer’s trial.”

But Tau fibrils are amyloid, and prions are amyloid and the Lewy body is made of amyloid too, if you subscribe to the current definition of amyloid as something that shows a cross-beta pattern on Xray diffraction — https://www.researchgate.net/figure/Schematic-representation-of-the-cross-b-X-ray-diffraction-pattern-typically-produced-by_fig3_293484229.

Take about 500 dishes and stack them on top of each other and that’s the rough dimension of an amyloid fibril.  Each dish is made of a beta sheet.  Xray diffraction was used to characterize amyloid because no one could dissolve it, and study it by Xray crystallography.

Now that we have cryoEM, we’re learning much more.  I have , gone on and on about how miraculous it is that proteins have one or a few shapes — https://luysii.wordpress.com/2010/08/04/why-should-a-protein-have-just-one-shape-or-any-shape-for-that-matter/

So prion strains and the fact that alpha-synuclein amyloid aggregates produce different clinical disease despite having the same amino acid sequence was no surprise to me.

But it gets better.  The prion strains etc. etc may not be due to different structure but different decorations of the same structure by protein modifications.

The same is true for the different diseases that tau amyloid fibrils produce — never mind that they’ve been called neurofibrillary tangles and not amyloid, they have the same cross-beta structure.

A great paper [ Cell vol. 180 pp. 633 – 644 ’20 ] shows how different the tau protofilament from one disease (corticobasal degeneration) is from another (Alzheimer’s disease).  Figure three shows the side chain as it meanders around forming one ‘dish’ in the model above.  The meander is quite different in corticobasal degeneration (CBD) and Alzheimers.

It’s all the stuff tacked on. Tau is modified on its lysines (some 15% of all amino acids in the beta sheet forming part) by ubiquitination, acetylation and trimethylation, and by phosphorylation on serine.

Figure 3 is worth more of a look because it shows how different the post-translational modifications are of the same amino acid stretch of the tau protein in the Alzheimer’s and CBD.  Why has this not been seen before — because the amyloid was treated with pronase and other enzymes to get better pictures on cryoEM.  Isn’t that amazing.  Someone is probably looking to see if this explains prion strains.

The question arises — is the chain structure in space different because of the modifications, or are the modifications there because the chain structure in space is different.  This could go either way we have 500+ enzymes (protein kinases) putting phosphate on serine and/or threonine, each looking at a particular protein conformation around the two so they don’t phosphorylate everything — ditto for the enzymes that put ubiquitin on proteins.

Fascinating times.  Imagine something as simple as pronase hiding all this beautiful structure.

 

 

Has the holy grail for Parkinson’s disease been found?

Will the horribly named SynuClean-D treat Parkinsonism?  Here is the structure described  verbally.  Start with pyridine.  In the 2 position put benzene with a nitrogroup in the meta position, position 3 on pyridine NO2, position 4 CF3, position 5 CN (is this trouble?) position 6 OH.  That’s it.  Being great chemists you can immediately see what it does.

Back up a bit.  One of the pathologic findings in parkinsonism in the 450,000 dopamine neurons we have in the pars compacta at birth, is the Lewy body, which is largely made of the alpha-synuclein protein.  This is thought to kill the neurons in some way (just which form of alpha-synuclein is the culprit is still under debate — the monomer, the tetramer etc. etc).  Even the actual conformation of the monomer is still under debate (intrinsically disordered) etc. etc.

The following paper [ Proc. Natl. Acad. Sci. vo. 115 pp. 10481 – 10486 ’18 ] claims that SynuClean-D inhibits alpha-synuclein aggregation, disrupts mature amyloid fibrils made from it, prevents fibril propagation and abolishes the degeneration of dopamine neurons in an animal model of Parkinsonism.  Wow ! ! !

Time for some replication — look at the disaster from Harvard Med School about cardiac stem cells, with 30+ papers retracted. https://www.nytimes.com/2018/10/15/health/piero-anversa-fraud-retractions.html.  Ghastly.

A pile of spent bullets — take II

I can tell you after being in neurology for 50 years that back in the day every microscopic inclusion found in neurologic disease was thought to be causative.  This was certainly true for the senile plaque of Alzheimer’s disease and the Lewy body of Parkinsonism.  Interestingly, the protein inclusions in ALS weren’t noticed for decades.

However there are 3 possible explanations for any microscopic change seen in any disease.  The first is that they are causative (the initial assumption).  The second is that they are a pile of spent bullets, which the neuron uses to defend itself against the real killer.  The third is they are tombstones, the final emanations of a dying cell, a marker for the cause of death rather than the cause itself.

An earlier post concerned work that implied that the visible aggregates of alpha-synuclein in Parkinson’s disease were protective rather than destructive — https://luysii.wordpress.com/2018/01/07/are-the-inclusions-found-in-neurologic-disease-attempts-at-defense-rather-then-the-cause/.

Comes now Proc. Natl. Acad. Sci. vol. 115 pp. 4661 – 4665 ’18 on Superoxide Dismutase 1 (SOD1) and ALS. Familial ALS is fortunately less common than the sporadic form (under 10% in my experience).  Mutations in SOD1 are found in the familial form.  The protein contains 153 amino acids, and as 6/16 160 different mutations in SOD1 have been found.  Since each codon can contain only 3 mutations from the wild type, this implies that, at a minimum,  53/153 codons of the protein have been mutated causing the disease.  Sadly, there is no general agreement on what the mutations actually do — impair SOD1 function, produce a new SOD1 function, cause SOD1 to bind to something else modifying that function etc. etc.  A search on Google Scholar for SOD1 and ALS produced 28,000 hits.

SOD1 exists as a soluble trimer of proteins or the fibrillar aggregate.   Knowing the structure of the trimer, the authors produced mutants which stabilized the trimer (Glycine 147 –> Proline) making aggregate formation less likely and two mutations (Asparagine 53 –> Isoleucine, and Aspartic acid 101 –> Isoleucine) which destabilized the trimer making aggregate formation more likely.  Then they threw the various mutant proteins at neuroblastoma cells and looked for toxicity.

The trimer stabilizing mutant  (Glycine 147 –> Proline) was toxic and the destabilizing mutants  (Asparagine 53 –> Isoleucine, and Aspartic acid 101 –> Isoleucine)  actually improved survival of the cells.  The trimer stabilizing mutant was actually more toxic to the cells than two naturally occurring SOD1 mutants which cause ALS in people (Alanine 4 –> Valine, Glycine 93 –> Alanine).  Clearly with these two something steric is going on.

So, in this experimental system at least, the aggregate is protective and what you can’t see (microscopically) is what kills cells.

Are the inclusions found in neurologic disease attempts at defense rather then the cause?

Thinking about pathologic changes in neurologic disease has been simplistic in the extreme.  Intially both senile plaques and neurofibrillary tangles were assumed to be causative for Alzheimer’s.  However there are 3 possible explanations for any microscopic change seen in any disease.  The first is that they are causative (the initial assumption).  The second is that they are a pile of spent bullets, which the neuron uses to defend itself against the real killer.  The third is they are tombstones, the final emanations of a dying cell.

A fascinating recent paper [ Neuron vol. 97 pp. 3 – 4, 108 – 124 ’18 ] http://www.cell.com/neuron/pdf/S0896-6273(17)31089-9.pdf gives strong evidence that some inclusions can be defensive rather than toxic.  It contains the following;

“In these studies, we found that formation of large inclusions was correlated with protection from a-synuclein toxicity”

The paper is likely to be a landmark because it ties two neurologic diseases (Parkinsonism and Alzheimer’s) together by showing that they may due to toxicity produced by single mechanism — inhibition of mitochondrial function.

Basically, the paper says that overproduction of alpha synuclein (the major component of the Lewy body inclusion of Parkinsonism) and tau (the major component of the neurofibrillary tangle of Alzheimer’s disease) produce death and destruction by interfering with mitochondria.  The mechanism is mislocalization of a protein called Drp1 which is important in mitochondrial function (it’s required for mitochondrial fission).

Actin isn’t just found in muscle, but is part of the cytoskeleton of every cell.  Alpha-synuclein is held to alter actin dynamics by binding to another protein called spectrin (which also binds to actin).  The net effect is to mislocalize Drp1 so it doesn’t bind to mitochondria where it is needed.  It isn’t clear to me from reading the paper, just where the Drp1 actually goes.

In any event overexpressing spectrin causes the alpha-synuclein to bind to it forming inclusions and protecting the cells.

There is a similar mechanism proposed for tau, and co-expressing alpha synuclein with Tau significantly enhances the toxicity of both models of tau toxicity which implies that they work by a common mechanism.

Grains of salt are required because the organism used for the model is the humble fruitfly (Drosophila).

Kuru continues to inform

Neurologists of my generation were fascinated with Kuru, a disease of the (formerly) obscure Fore tribe of New Guinea. Who would have thought they would tell us a good deal about protein structure and dynamics?

It is a fascinating story including a Nobelist pedophile (Carleton Gajdusek) https://en.wikipedia.org/wiki/Daniel_Carleton_Gajdusek and another (future) Nobelist who I probably ate lunch with when we were both medical students in the same Medical Fraternity but don’t remember –https://en.wikipedia.org/wiki/Stanley_B._Prusiner

Kuru is a horrible neurodegeneration starting with incoordination, followed by dementia and death in a vegetative state in 4 months to 2 years. For the cognoscenti — the pathology is neuronal loss, astrocytosis, microglial proliferation, loss of myelinated fibers and the kuru plaque.

It is estimated that it killed 3,000 members of the 30,000 member tribe. The mode of transmission turned out to be ritual cannibalism (flesh of the dead was eaten by the living before burial). Once that stopped the disease disappeared.

It is a prion disease, e.g. a disease due to a protein (called PrP) we all have but in an abnormal conformation (called PrpSc). Like Vonnegut’s Ice-9 (https://en.wikipedia.org/wiki/Ice-nine) PrPSc causes normal PrP to assume its conformation, causing it to aggregate and form an insoluble mess. We still don’t know the structure of PrPSc (because it’s an insoluble mess). Even now, “the detailed structure of PrPSc remains unresolved” but ‘it seems to be’ very similar to amyloid [ Nature vol. 512 pp. 32 – 34 ’14]. Not only that, but we don’t know what PrP actually does, and mice with no PrP at all are normal [ Nature vol. 365 p. 386 ’93 ]. For much more on prions please see https://luysii.wordpress.com/2014/03/30/a-primer-on-prions/

Prusiner’s idea that prion diseases were due to a protein, with no DNA or RNA involved met with incredible resistance for several reasons. This was the era of DNA makes RNA makes protein, and Prisoner was asking us to believe that a protein could essentially reproduce without any DNA or RNA. This was also the era in which X-ray crystallography was showing us ‘the’ structure of proteins, and it was hard to accept that there could be more than one.

There are several other prion diseases of humans (all horrible) — mad cow disease, Jakob Creutzfeldt disease, Familial fatal insomnia, etc. etc. and others in animals. All involve the same protein PrP.

One can take brain homogenates for an infected animal, inoculate it into a normal animal and watch progressive formation of PrPSc insoluble aggregates and neurodegeneration. A huge research effort has gone into purifying these homogenates so the possibility of any DNA or RNA causing the problem is very low. There still is one hold out — Laura Manuelidis who would have been a classmate had I gone to Yale Med instead of Penn. n

Enter [ Nature vol. 522 pp. 423 – 424, 478 – 481 ’15 ] which continued to study the genetic makeup of the Fore tribe. In an excellent example of natural selection in action, a new variant of PrP appeared in the tribe. At amino acid #127, valine is substituted for glycine (G127V is how this sort of thing is notated). Don’t be confused if you’re somewhat conversant with the literature — we all have a polymorphism at amino acid #129 of the protein, which can be either methionine or valine. It is thought that people with one methionine and one valine on each gene at 129 were somewhat protected against prion disease (presumably it affects the binding between identical prion proteins required for conformational change to PrPSc.

What’s the big deal? Well, this work shows that mice with one copy of V127 are protected against kuru prions. The really impressive point is that the mice are also protected against variant Creutzfedlt disease prions. Mice with two copies of V127 are completely protected against all forms of human prion disease . So something about V/V at #127 prevents the conformation change to PrPSc. We don’t know what it is as the normal structure of the variant hasn’t been determined as yet.

This is quite exciting, and work is certain to go on to find short peptide sequences mimicking the conformation around #127 to see if they’ll also work against prion diseases.

This won’t be a huge advance for the population at large, as prion diseases, as classically known, are quite rare. Creutzfeldt disease hits 1 person out of a million each year.

There are far bigger fish to fry however. There is some evidence that the neurofibrillary tangles (tau protein) of Alzheimer’s disease and the Lewy bodies (alpha-Synuclein) of Parkinsonism, spread cell to cell by a ‘prionlike’ mechanism [ Nature vol.485 pp. 651 – 655 ’12, Neuron vol. 73 pp. 1204 – 1215 ’12 ]. Could this sort of thing be blocked by a small amino acid change in one of them (or better a small drug like peptide?).

Stay tuned.