Tag Archives: Lewy Body

Has the holy grail for Parkinson’s disease been found?

Will the horribly named SynuClean-D treat Parkinsonism?  Here is the structure described  verbally.  Start with pyridine.  In the 2 position put benzene with a nitrogroup in the meta position, position 3 on pyridine NO2, position 4 CF3, position 5 CN (is this trouble?) position 6 OH.  That’s it.  Being great chemists you can immediately see what it does.

Back up a bit.  One of the pathologic findings in parkinsonism in the 450,000 dopamine neurons we have in the pars compacta at birth, is the Lewy body, which is largely made of the alpha-synuclein protein.  This is thought to kill the neurons in some way (just which form of alpha-synuclein is the culprit is still under debate — the monomer, the tetramer etc. etc).  Even the actual conformation of the monomer is still under debate (intrinsically disordered) etc. etc.

The following paper [ Proc. Natl. Acad. Sci. vo. 115 pp. 10481 – 10486 ’18 ] claims that SynuClean-D inhibits alpha-synuclein aggregation, disrupts mature amyloid fibrils made from it, prevents fibril propagation and abolishes the degeneration of dopamine neurons in an animal model of Parkinsonism.  Wow ! ! !

Time for some replication — look at the disaster from Harvard Med School about cardiac stem cells, with 30+ papers retracted. https://www.nytimes.com/2018/10/15/health/piero-anversa-fraud-retractions.html.  Ghastly.

Advertisements

A pile of spent bullets — take II

I can tell you after being in neurology for 50 years that back in the day every microscopic inclusion found in neurologic disease was thought to be causative.  This was certainly true for the senile plaque of Alzheimer’s disease and the Lewy body of Parkinsonism.  Interestingly, the protein inclusions in ALS weren’t noticed for decades.

However there are 3 possible explanations for any microscopic change seen in any disease.  The first is that they are causative (the initial assumption).  The second is that they are a pile of spent bullets, which the neuron uses to defend itself against the real killer.  The third is they are tombstones, the final emanations of a dying cell, a marker for the cause of death rather than the cause itself.

An earlier post concerned work that implied that the visible aggregates of alpha-synuclein in Parkinson’s disease were protective rather than destructive — https://luysii.wordpress.com/2018/01/07/are-the-inclusions-found-in-neurologic-disease-attempts-at-defense-rather-then-the-cause/.

Comes now Proc. Natl. Acad. Sci. vol. 115 pp. 4661 – 4665 ’18 on Superoxide Dismutase 1 (SOD1) and ALS. Familial ALS is fortunately less common than the sporadic form (under 10% in my experience).  Mutations in SOD1 are found in the familial form.  The protein contains 153 amino acids, and as 6/16 160 different mutations in SOD1 have been found.  Since each codon can contain only 3 mutations from the wild type, this implies that, at a minimum,  53/153 codons of the protein have been mutated causing the disease.  Sadly, there is no general agreement on what the mutations actually do — impair SOD1 function, produce a new SOD1 function, cause SOD1 to bind to something else modifying that function etc. etc.  A search on Google Scholar for SOD1 and ALS produced 28,000 hits.

SOD1 exists as a soluble trimer of proteins or the fibrillar aggregate.   Knowing the structure of the trimer, the authors produced mutants which stabilized the trimer (Glycine 147 –> Proline) making aggregate formation less likely and two mutations (Asparagine 53 –> Isoleucine, and Aspartic acid 101 –> Isoleucine) which destabilized the trimer making aggregate formation more likely.  Then they threw the various mutant proteins at neuroblastoma cells and looked for toxicity.

The trimer stabilizing mutant  (Glycine 147 –> Proline) was toxic and the destabilizing mutants  (Asparagine 53 –> Isoleucine, and Aspartic acid 101 –> Isoleucine)  actually improved survival of the cells.  The trimer stabilizing mutant was actually more toxic to the cells than two naturally occurring SOD1 mutants which cause ALS in people (Alanine 4 –> Valine, Glycine 93 –> Alanine).  Clearly with these two something steric is going on.

So, in this experimental system at least, the aggregate is protective and what you can’t see (microscopically) is what kills cells.

Are the inclusions found in neurologic disease attempts at defense rather then the cause?

Thinking about pathologic changes in neurologic disease has been simplistic in the extreme.  Intially both senile plaques and neurofibrillary tangles were assumed to be causative for Alzheimer’s.  However there are 3 possible explanations for any microscopic change seen in any disease.  The first is that they are causative (the initial assumption).  The second is that they are a pile of spent bullets, which the neuron uses to defend itself against the real killer.  The third is they are tombstones, the final emanations of a dying cell.

A fascinating recent paper [ Neuron vol. 97 pp. 3 – 4, 108 – 124 ’18 ] http://www.cell.com/neuron/pdf/S0896-6273(17)31089-9.pdf gives strong evidence that some inclusions can be defensive rather than toxic.  It contains the following;

“In these studies, we found that formation of large inclusions was correlated with protection from a-synuclein toxicity”

The paper is likely to be a landmark because it ties two neurologic diseases (Parkinsonism and Alzheimer’s) together by showing that they may due to toxicity produced by single mechanism — inhibition of mitochondrial function.

Basically, the paper says that overproduction of alpha synuclein (the major component of the Lewy body inclusion of Parkinsonism) and tau (the major component of the neurofibrillary tangle of Alzheimer’s disease) produce death and destruction by interfering with mitochondria.  The mechanism is mislocalization of a protein called Drp1 which is important in mitochondrial function (it’s required for mitochondrial fission).

Actin isn’t just found in muscle, but is part of the cytoskeleton of every cell.  Alpha-synuclein is held to alter actin dynamics by binding to another protein called spectrin (which also binds to actin).  The net effect is to mislocalize Drp1 so it doesn’t bind to mitochondria where it is needed.  It isn’t clear to me from reading the paper, just where the Drp1 actually goes.

In any event overexpressing spectrin causes the alpha-synuclein to bind to it forming inclusions and protecting the cells.

There is a similar mechanism proposed for tau, and co-expressing alpha synuclein with Tau significantly enhances the toxicity of both models of tau toxicity which implies that they work by a common mechanism.

Grains of salt are required because the organism used for the model is the humble fruitfly (Drosophila).

Kuru continues to inform

Neurologists of my generation were fascinated with Kuru, a disease of the (formerly) obscure Fore tribe of New Guinea. Who would have thought they would tell us a good deal about protein structure and dynamics?

It is a fascinating story including a Nobelist pedophile (Carleton Gajdusek) https://en.wikipedia.org/wiki/Daniel_Carleton_Gajdusek and another (future) Nobelist who I probably ate lunch with when we were both medical students in the same Medical Fraternity but don’t remember –https://en.wikipedia.org/wiki/Stanley_B._Prusiner

Kuru is a horrible neurodegeneration starting with incoordination, followed by dementia and death in a vegetative state in 4 months to 2 years. For the cognoscenti — the pathology is neuronal loss, astrocytosis, microglial proliferation, loss of myelinated fibers and the kuru plaque.

It is estimated that it killed 3,000 members of the 30,000 member tribe. The mode of transmission turned out to be ritual cannibalism (flesh of the dead was eaten by the living before burial). Once that stopped the disease disappeared.

It is a prion disease, e.g. a disease due to a protein (called PrP) we all have but in an abnormal conformation (called PrpSc). Like Vonnegut’s Ice-9 (https://en.wikipedia.org/wiki/Ice-nine) PrPSc causes normal PrP to assume its conformation, causing it to aggregate and form an insoluble mess. We still don’t know the structure of PrPSc (because it’s an insoluble mess). Even now, “the detailed structure of PrPSc remains unresolved” but ‘it seems to be’ very similar to amyloid [ Nature vol. 512 pp. 32 – 34 ’14]. Not only that, but we don’t know what PrP actually does, and mice with no PrP at all are normal [ Nature vol. 365 p. 386 ’93 ]. For much more on prions please see https://luysii.wordpress.com/2014/03/30/a-primer-on-prions/

Prusiner’s idea that prion diseases were due to a protein, with no DNA or RNA involved met with incredible resistance for several reasons. This was the era of DNA makes RNA makes protein, and Prisoner was asking us to believe that a protein could essentially reproduce without any DNA or RNA. This was also the era in which X-ray crystallography was showing us ‘the’ structure of proteins, and it was hard to accept that there could be more than one.

There are several other prion diseases of humans (all horrible) — mad cow disease, Jakob Creutzfeldt disease, Familial fatal insomnia, etc. etc. and others in animals. All involve the same protein PrP.

One can take brain homogenates for an infected animal, inoculate it into a normal animal and watch progressive formation of PrPSc insoluble aggregates and neurodegeneration. A huge research effort has gone into purifying these homogenates so the possibility of any DNA or RNA causing the problem is very low. There still is one hold out — Laura Manuelidis who would have been a classmate had I gone to Yale Med instead of Penn. n

Enter [ Nature vol. 522 pp. 423 – 424, 478 – 481 ’15 ] which continued to study the genetic makeup of the Fore tribe. In an excellent example of natural selection in action, a new variant of PrP appeared in the tribe. At amino acid #127, valine is substituted for glycine (G127V is how this sort of thing is notated). Don’t be confused if you’re somewhat conversant with the literature — we all have a polymorphism at amino acid #129 of the protein, which can be either methionine or valine. It is thought that people with one methionine and one valine on each gene at 129 were somewhat protected against prion disease (presumably it affects the binding between identical prion proteins required for conformational change to PrPSc.

What’s the big deal? Well, this work shows that mice with one copy of V127 are protected against kuru prions. The really impressive point is that the mice are also protected against variant Creutzfedlt disease prions. Mice with two copies of V127 are completely protected against all forms of human prion disease . So something about V/V at #127 prevents the conformation change to PrPSc. We don’t know what it is as the normal structure of the variant hasn’t been determined as yet.

This is quite exciting, and work is certain to go on to find short peptide sequences mimicking the conformation around #127 to see if they’ll also work against prion diseases.

This won’t be a huge advance for the population at large, as prion diseases, as classically known, are quite rare. Creutzfeldt disease hits 1 person out of a million each year.

There are far bigger fish to fry however. There is some evidence that the neurofibrillary tangles (tau protein) of Alzheimer’s disease and the Lewy bodies (alpha-Synuclein) of Parkinsonism, spread cell to cell by a ‘prionlike’ mechanism [ Nature vol.485 pp. 651 – 655 ’12, Neuron vol. 73 pp. 1204 – 1215 ’12 ]. Could this sort of thing be blocked by a small amino acid change in one of them (or better a small drug like peptide?).

Stay tuned.