Tag Archives: Cat’s Cradle

The prion battles continue with a historical note at the end

Now that we know proteins don’t have just one shape, and that 30% of them have unstructured parts, it’s hard to remember just how radical that Prusiner’s proposal that a particular conformation (PrPSc) of the normal prion protein (PrPC) caused other prion proteins to adopt it and cause disease was back in the 80s. Actually Kurt Vonnegut got there first with Ice-9 in “Cat’s Cradle ” in 1963. If you’ve never read it, do so, you’ll like it.

There was huge resistance to Prusiner’s idea, but eventually it became accepted except by Laura Manuelidis (about which more later). People kept saying the true infectious agent was a contaminant in the preparations Prusiner used to infect mice and that the prion protein (called PrPC) was irrelevant.

The convincing argument that Prusiner was right (for me at least) was PMCA (Protein Misfolding Cyclic Amplification) in which you start with a seed of PrPSc (the misfolded form of the normal prion protein PrPC), incubate it with a 10,000 fold excess of normal PrPC, which is converted by the evil PrPSC to more of itself. Then you sonicate what you’ve got breaking it into small fragments, and continue the process with another 10,000 fold excess of normal PrPC. Repeat this 20 times. This should certainly dilute out any infectious agent along for the ride (no living tissue is involved at any point). You still get PrPSc at the end. For details see Cell vol. 121 pp. 195 – 206 ’05.

Now comes [ Proc. Natl. Acad. Sci. vol. 117 pp. 23815 – 23822 ’20 ] which claims to be able to separate the infectivity of prions from their toxicity. Highly purified mouse prions show no signs of toxicity (neurite fragmentation, dendritic spine density changes) in cell culture, but are still infectious producing disease when injected into another mouse brain.

Even worse treatment of brain homogenates from prion infected mice with sodium laroylsarcosine destroys the toxicity to cultured neurons without reducing infectivity to the next mouse.

So if this paper can be replicated it implies that the prion protein triggers some reaction in the intact brain which then kills the animals.

Manuelidis thought in 2011 that the prion protein is a reaction to infection, and that we haven’t found the culprit. I think the PCMA pretty much destroyed that idea.

So basically we’re almost back to square one with what causes prion disease. Just to keep you thinking. Consider this. We can knock out the prion protein gene in mice. Guess what? The mice are normal. However, injection of the abnormal prion protein (PrPSc) into their brains (which is what researchers do to transmit the disease) doesn’t cause any disease.

Historical notes: I could have gone to Yale Med when Manuelidis was there, but chose Penn instead. According to Science vol. 332 pp. 1024 – 1027 ’11 she was one of 6 women in the class, and married her professor (Manuelidis) aged 48 when she was 24 graduating in 1967. In today’s rather Victorian standards of consent, power differential between teacher and student, that would probably have gotten both of them bounced out.

So I went to Penn Med. graduating in ’66. Prusiner graduated in ’68. He and I were in the same medical fraternity (Nu Sigma Nu). Don’t think animal house, medical fraternities were a place to get some decent food, play a piano shaped object and very occasionally party. It’s very likely that we shared a meal, but I have no recollection.

Graduating along with me was another Nobel Laureate to be — Mike Brown, he of the statins. Obviously a smart guy, but he didn’t seem outrageously smarter than the rest of us.

Kuru continues to inform

Neurologists of my generation were fascinated with Kuru, a disease of the (formerly) obscure Fore tribe of New Guinea. Who would have thought they would tell us a good deal about protein structure and dynamics?

It is a fascinating story including a Nobelist pedophile (Carleton Gajdusek) https://en.wikipedia.org/wiki/Daniel_Carleton_Gajdusek and another (future) Nobelist who I probably ate lunch with when we were both medical students in the same Medical Fraternity but don’t remember –https://en.wikipedia.org/wiki/Stanley_B._Prusiner

Kuru is a horrible neurodegeneration starting with incoordination, followed by dementia and death in a vegetative state in 4 months to 2 years. For the cognoscenti — the pathology is neuronal loss, astrocytosis, microglial proliferation, loss of myelinated fibers and the kuru plaque.

It is estimated that it killed 3,000 members of the 30,000 member tribe. The mode of transmission turned out to be ritual cannibalism (flesh of the dead was eaten by the living before burial). Once that stopped the disease disappeared.

It is a prion disease, e.g. a disease due to a protein (called PrP) we all have but in an abnormal conformation (called PrpSc). Like Vonnegut’s Ice-9 (https://en.wikipedia.org/wiki/Ice-nine) PrPSc causes normal PrP to assume its conformation, causing it to aggregate and form an insoluble mess. We still don’t know the structure of PrPSc (because it’s an insoluble mess). Even now, “the detailed structure of PrPSc remains unresolved” but ‘it seems to be’ very similar to amyloid [ Nature vol. 512 pp. 32 – 34 ’14]. Not only that, but we don’t know what PrP actually does, and mice with no PrP at all are normal [ Nature vol. 365 p. 386 ’93 ]. For much more on prions please see https://luysii.wordpress.com/2014/03/30/a-primer-on-prions/

Prusiner’s idea that prion diseases were due to a protein, with no DNA or RNA involved met with incredible resistance for several reasons. This was the era of DNA makes RNA makes protein, and Prisoner was asking us to believe that a protein could essentially reproduce without any DNA or RNA. This was also the era in which X-ray crystallography was showing us ‘the’ structure of proteins, and it was hard to accept that there could be more than one.

There are several other prion diseases of humans (all horrible) — mad cow disease, Jakob Creutzfeldt disease, Familial fatal insomnia, etc. etc. and others in animals. All involve the same protein PrP.

One can take brain homogenates for an infected animal, inoculate it into a normal animal and watch progressive formation of PrPSc insoluble aggregates and neurodegeneration. A huge research effort has gone into purifying these homogenates so the possibility of any DNA or RNA causing the problem is very low. There still is one hold out — Laura Manuelidis who would have been a classmate had I gone to Yale Med instead of Penn. n

Enter [ Nature vol. 522 pp. 423 – 424, 478 – 481 ’15 ] which continued to study the genetic makeup of the Fore tribe. In an excellent example of natural selection in action, a new variant of PrP appeared in the tribe. At amino acid #127, valine is substituted for glycine (G127V is how this sort of thing is notated). Don’t be confused if you’re somewhat conversant with the literature — we all have a polymorphism at amino acid #129 of the protein, which can be either methionine or valine. It is thought that people with one methionine and one valine on each gene at 129 were somewhat protected against prion disease (presumably it affects the binding between identical prion proteins required for conformational change to PrPSc.

What’s the big deal? Well, this work shows that mice with one copy of V127 are protected against kuru prions. The really impressive point is that the mice are also protected against variant Creutzfedlt disease prions. Mice with two copies of V127 are completely protected against all forms of human prion disease . So something about V/V at #127 prevents the conformation change to PrPSc. We don’t know what it is as the normal structure of the variant hasn’t been determined as yet.

This is quite exciting, and work is certain to go on to find short peptide sequences mimicking the conformation around #127 to see if they’ll also work against prion diseases.

This won’t be a huge advance for the population at large, as prion diseases, as classically known, are quite rare. Creutzfeldt disease hits 1 person out of a million each year.

There are far bigger fish to fry however. There is some evidence that the neurofibrillary tangles (tau protein) of Alzheimer’s disease and the Lewy bodies (alpha-Synuclein) of Parkinsonism, spread cell to cell by a ‘prionlike’ mechanism [ Nature vol.485 pp. 651 – 655 ’12, Neuron vol. 73 pp. 1204 – 1215 ’12 ]. Could this sort of thing be blocked by a small amino acid change in one of them (or better a small drug like peptide?).

Stay tuned.