Maryam Mirzakhani

“The universal scientific language is broken English.” So sayeth Don Voet 50+ years ago when we were graduate students. He should know, as his parents were smart enough to get the hell out of the Netherlands before WWII. I met them and they told me that there was some minor incident there involving Germans who promptly went bananas. They decided that this wasn’t the way a friendly country behaved and got out. Just about everyone two generations back in my family was an immigrant, so I heard a lot of heavily accented (if not broken) English growing up.

Which (at last) brings us to Maryam Mirzakhani, a person probably not familiar to chemists, but a brilliant mathematician who has just won the Fields Medal (the Nobel of mathematics). Born in Teheran and educated through college there, she came to Harvard for her PhD, and has remained here ever since and is presently a full prof. at Stanford.

Why she chose to stay here isn’t clear. The USA has picked up all sorts of brains from the various European upheavals and petty hatreds (see http://luysii.wordpress.com/2013/10/27/hitlers-gifts-and-russias-gift/). Given the present and past state of the middle East, I’ve always wondered if we’d scooped up any of the talent originating there. Of course, all chemists know of E. J. Corey, a Lebanese Christian, but he was born here 86 years ago. Elias Zerhouni former director of the NIH, was born in Algeria. That’s about all I know at this level of brilliance and achievement. I’m sure there are others that I’ve missed. Hopefully more such people are already here but haven’t established themselves as yet. This is possible, given that they come from a region without world class scientific institutions. Hitler singlehandedly destroyed the great German departments of Mathematics and Physics and the USA (and England) picked up the best of them.

Given the way things are going presently, the USA may shortly acquire a lot of Muslim brains from Europe. All it will take is a few random beheadings of Europeans in their home countries by the maniacs of ISIS and their ilk. Look what Europeans did to a people who did not physically threaten them during WWII.Lest you think this sort of behavior was a purely German aberration, try Googling Quisling and Marshal Petain. God knows what they’ll do when they are actually threatened. Remember, less than 20 years ago, the Europeans did nothing as Muslims were being slaughtered by Serbs in Kosovo.

Not to ignore the awful other side of the coin, the religious cleansing of the middle East of Christians by the larger Muslim community. The politically correct here have no love of Christianity. However, the continued passivity of American Christians is surprising. Whatever happened to “Onward Christian Soldiers” which seemed to be sung by all at least once a week in the grade school I attended 60+ years ago.

These are very scary times.

Now we know why hot food tastes differently

An absolutely brilliant piece of physical chemistry explained a puzzling biologic phenomenon that organic chemistry was powerless to illuminate.

First, a fair amount of background

Ion channels are proteins present in the cell membrane of all our cells, but in neurons they are responsible for the maintenance of a membrane potential across the membrane, which has the ability change abruptly causing an nerve cell to fire an impulse. Functionally, ligand activated ion channels are pretty easy to understand. A chemical binds to them and they open and the neuron fires (or a muscle contracts — same thing). The channels don’t let everything in, just particular ions. Thus one type of channel which binds acetyl choline lets in sodium (not potassium, not calcium) which causes the cell to fire impulses. The GABA[A] receptor (the ion channel for gamma amino butyric acid) lets in chloride ions (and little else) which inhibits the neuron carrying it from firing. (This is why the benzodiazepines and barbiturates are anticonvulsants).

Since ion channels are full of amino acids, some of which have charged side chains, it’s easy to see how a change in electrical potential across the cell membrane could open or shut them.

By the way, the potential is huge although it doesn’t seem like much. It is usually given as 70 milliVolts (inside negatively charged, outside positively charged). Why is this a big deal? Because the electric field across our membranes is huge. 70 x 10^-3 volts is only 70 milliVolts. The cell membrane is quite thin — just 70 Angstroms. This is 7 nanoMeters (7 x 10^-9) meters. Divide 7 x 10^-3 volts by 7 x 10^-9 and you get a field of 10,000,000 Volts/meter.

Now for the main course. We easily sense hot and cold. This is because we have a bunch of different ion channels which open in response to different temperatures. All this without neurotransmitters binding to them, or changes in electric potential across the membrane.

People had searched for some particular sequence of amino acids common to the channels to no avail (this is the failure of organic chemistry).

In a brilliant paper, entropy was found to be the culprit. Chemists are used to considering entropy effects (primarily on reaction kinetics, but on equilibria as well). What happens is that in the open state a large number of hydrophobic amino acids are exposed to the extracellular space. To accommodate them (e.g. to solvate them), water around them must be more ordered, decreasing entropy. This, of course, is why oil and water don’t mix.

As all the chemists among us should remember, the equilibrium constant has components due to kinetic energy (e.g. heat, e.g. enthalpy) and due to entropy.

The entropy term must be multiplied by the temperature, which is where the temperature sensitivity of the equilibrium constant (in this case open channel/closed channel) comes in. Remember changes in entropy and enthalpy work in opposite directions —

delta G(ibbs free energy) = delta H (enthalpy) - T * delta S (entropy

Here’s the paper [ Cell vol. 158 pp. 977 - 979, 1148 1158 '14 ] They note that if a large number of buried hydrophobic groups become exposed to water on a conformational change in the ion channel, an increased heat capacity should be produced due to water ordering to solvate the hydrophobic side chains. This should confer a strong temperature dependence on the equilibrium constant for the reaction. Exposing just 20 hydrophobic side chains in a tetrameric channel should do the trick. The side chains don’t have to be localized in a particular area (which is why organic chemists and biochemists couldn’t find a stretch of amino acids conferring cold or heat sensitivity — it didn’t matter where the hydrophobic amino acids were, as long as there were enough of them, somewhere).

In some way this entwines enthalpy and entropy making temperature dependent activation U shaped rather than monotonic. So such a channel is in principle both hot activated and cold activated, with the position of the U along the temperature axis determining which activation mode is seen at experimentally accessible temperatures.

All very nice, but how many beautiful theories have we seen get crushed by ugly facts. If they really understood what is going on with temperature sensitivity, they should be able to change a cold activated ion channel to a heat activated one (by mutating it). If they really, really understood things, they should be able to take a run of the mill temperature INsensitive ion channel and make it temperature sensitive. Amazingly, the authors did just that.

Impressive. Read the paper.

This harks back to the days when theories of organic reaction mechanisms were tested by building molecules to test them. When you made a molecule that no one had seen before and predicted how it would react you knew you were on to something.

Among the castrati

Yesterday being my wife’s birthday, we drove to an art museum. While there I glimpsed homo castratus, a rare and delicate species seen only in such places, art galleries and Whole Foods. They are very easy to spot by their plumage, posture and mate. He is invariably clad in short pants of drab coloration in most seasons. His mate (always female for although he is quite correct politically, he is not gay) is invariably wearing pants, usually jeans. He usually is slumped forward, particularly about the head and neck which, when combined with his expression, makes him resemble a basset hound. His mate invariably walks erect, shoulders back, head forward looking at all comers directly. This affords another clue as to the species. Look him in the eye and he turns his head and looks away. Look her in the eye, and she’ll try to stare you down. I’ve been in several amusing contests of this nature, which can be won by smiling pleasantly.

My wife says that this is reaction formation, as I was forced to wear short pants to grade school until the 5th grade. Perhaps.

Since most readers of this post are techies of one form or another, here is some fatherly advice. Marry a non-techie, or if you must, someone far outside your field. You’ll learn a lot and life will be more interesting, and perhaps you’ll be as well.

Thrust and Parry about memory storage outside neurons.

First the post of 23 Feb ’14 discussing the paper (between *** and &&& in case you’ve read it already)

Then some of the rather severe criticism of the paper.

Then some of the reply to the criticisms

Then a few comments of my own, followed by yet another old post about the chemical insanity neuroscience gets into when they apply concepts like concentration to very small volumes.

Enjoy
***
Are memories stored outside of neurons?

This may turn out to be a banner year for neuroscience. Work discussed in the following older post is the first convincing explanation of why we need sleep that I’ve seen.https://luysii.wordpress.com/2013/10/21/is-sleep-deprivation-like-alzheimers-and-why-we-need-sleep-in-the-first-place/

An article in Science (vol. 343 pp. 670 – 675 ’14) on some fairly obscure neurophysiology at the end throws out (almost as an afterthought) an interesting idea of just how chemically and where memories are stored in the brain. I find the idea plausible and extremely surprising.

You won’t find the background material to understand everything that follows in this blog. Hopefully you already know some of it. The subject is simply too vast, but plug away. Here a few, seriously flawed in my opinion, theories of how and where memory is stored in the brain of the past half century.

#1 Reverberating circuits. The early computers had memories made of something called delay lines (http://en.wikipedia.org/wiki/Delay_line_memory) where the same impulse would constantly ricochet around a circuit. The idea was used to explain memory as neuron #1 exciting neuron #2 which excited neuron . … which excited neuron #n which excited #1 again. Plausible in that the nerve impulse is basically electrical. Very implausible, because you can practically shut the whole brain down using general anesthesia without erasing memory.

#2 CaMKII — more plausible. There’s lots of it in brain (2% of all proteins in an area of the brain called the hippocampus — an area known to be important in memory). It’s an enzyme which can add phosphate groups to other proteins. To first start doing so calcium levels inside the neuron must rise. The enzyme is complicated, being comprised of 12 identical subunits. Interestingly, CaMKII can add phosphates to itself (phosphorylate itself) — 2 or 3 for each of the 12 subunits. Once a few phosphates have been added, the enzyme no longer needs calcium to phosphorylate itself, so it becomes essentially a molecular switch existing in two states. One problem is that there are other enzymes which remove the phosphate, and reset the switch (actually there must be). Also proteins are inevitably broken down and new ones made, so it’s hard to see the switch persisting for a lifetime (or even a day).

#3 Synaptic membrane proteins. This is where electrical nerve impulses begin. Synapses contain lots of different proteins in their membranes. They can be chemically modified to make the neuron more or less likely to fire to a given stimulus. Recent work has shown that their number and composition can be changed by experience. The problem is that after a while the synaptic membrane has begun to resemble Grand Central Station — lots of proteins coming and going, but always a number present. It’s hard (for me) to see how memory can be maintained for long periods with such flux continually occurring.

This brings us to the Science paper. We know that about 80% of the neurons in the brain are excitatory — in that when excitatory neuron #1 talks to neuron #2, neuron #2 is more likely to fire an impulse. 20% of the rest are inhibitory. Obviously both are important. While there are lots of other neurotransmitters and neuromodulators in the brains (with probably even more we don’t know about — who would have put carbon monoxide on the list 20 years ago), the major inhibitory neurotransmitter of our brains is something called GABA. At least in adult brains this is true, but in the developing brain it’s excitatory.

So the authors of the paper worked on why this should be. GABA opens channels in the brain to the chloride ion. When it flows into a neuron, the neuron is less likely to fire (in the adult). This work shows that this effect depends on the negative ions (proteins mostly) inside the cell and outside the cell (the extracellular matrix). It’s the balance of the two sets of ions on either side of the largely impermeable neuronal membrane that determines whether GABA is excitatory or inhibitory (chloride flows in either event), and just how excitatory or inhibitory it is. The response is graded.

For the chemists: the negative ions outside the neurons are sulfated proteoglycans. These are much more stable than the proteins inside the neuron or on its membranes. Even better, it has been shown that the concentration of chloride varies locally throughout the neuron. The big negative ions (e.g. proteins) inside the neuron move about but slowly, and their concentration varies from point to point.

Here’s what the authors say (in passing) “the variance in extracellular sulfated proteoglycans composes a potential locus of analog information storage” — translation — that’s where memories might be hiding. Fascinating stuff. A lot of work needs to be done on how fast the extracellular matrix in the brain turns over, and what are the local variations in the concentration of its components, and whether sulfate is added or removed from them and if so by what and how quickly.

We’ve concentrated so much on neurons, that we may have missed something big. In a similar vein, the function of sleep may be to wash neurons free of stuff built up during the day outside of them.

&&&

In the 5 September ’14 Science (vol. 345 p. 1130) 6 researchers from Finland, Case Western Reserve and U. California (Davis) basically say the the paper conflicts with fundamental thermodynamics so severely that “Given these theoretical objections to their interpretations, we choose not to comment here on the experimental results”.

In more detail “If Cl− were initially in equilibrium across a membrane, then the mere introduction of im- mobile negative charges (a passive element) at one side of the membrane would, according to their line of thinking, cause a permanent change in the local electrochemical potential of Cl−, there- by leading to a persistent driving force for Cl− fluxes with no input of energy.” This essentially accuses the authors of inventing a perpetual motion machine.

Then in a second letter, two more researchers weigh in (same page) — “The experimental procedures and results in this study are insufficient to support these conclusions. Contradictory results previously published by these authors and other laboratories are not referred to.”

The authors of the original paper don’t take this lying down. On the same page they discuss the notion of the Donnan equilibrium and say they were misinterpreted.

The paper, and the 3 letters all discuss the chloride concentration inside neurons which they call [Cl-]i. The problem with this sort of thinking (if you can call it that) is that it extrapolates the notion of concentration to very small volumes (such as a dendritic spine) where it isn’t meaningful. It goes on all the time in neuroscience. While between any two small rational numbers there is another, matter can be sliced only so thinly without getting down to the discrete atomic level. At this level concentration (which is basically a ratio between two very large numbers of molecules e.g. solute and solvent) simply doesn’t apply.

Here’s a post on the topic from a few months ago. It contains a link to another post showing that even Nobelists have chemical feet of clay.

More chemical insanity from neuroscience

The current issue of PNAS contains a paper (vol. 111 pp. 8961 – 8966, 17 June ’14) which uncritically quotes some work done back in the 80’s and flatly states that synaptic vesicles http://en.wikipedia.org/wiki/Synaptic_vesicle have a pH of 5.2 – 5.7. Such a value is meaningless. Here’s why.

A pH of 5 means that there are 10^-5 Moles of H+ per liter or 6 x 10^18 actual ions/liter.

Synaptic vesicles have an ‘average diameter’ of 40 nanoMeters (400 Angstroms to the chemist). Most of them are nearly spherical. So each has a volume of

4/3 * pi * (20 * 10^-9)^3 = 33,510 * 10^-27 = 3.4 * 10^-23 liters. 20 rather than 40 because volume involves the radius.

So each vesicle contains 6 * 10^18 * 3.4 * 10^-23 = 20 * 10^-5 = .0002 ions.

This is similar to the chemical blunders on concentration in the nano domain committed by a Nobelist. For details please see — http://luysii.wordpress.com/2013/10/09/is-concentration-meaningful-in-a-nanodomain-a-nobel-is-no-guarantee-against-chemical-idiocy/

Didn’t these guys ever take Freshman Chemistry?

Addendum 24 June ’14

Didn’t I ever take it ? John wrote the following this AM

Please check the units in your volume calculation. With r = 10^-9 m, then V is in m^3, and m^3 is not equal to L. There’s 1000 L in a m^3.
Happy Anniversary by the way.

To which I responded

Ouch ! You’re correct of course. However even with the correction, the results come out to .2 free protons (or H30+) per vesicle, a result that still makes no chemical sense. There are many more protons in the vesicle, but they are buffered by the proteins and the transmitters contained within.

Taking a break

No posts for a while. Off to Maine for some R & R after an intense two months of our daughter in law’s pregnancy complicated by pre-eclampsia followed by an emergency delivery at 34 weeks gestation of a 3.5 pound infant who had to spend 3 weeks in the neonatal ICU. Mother and daughter doing well presently. Sometimes you can really know too much. As a neurologist I saw everything which could go wrong in this situation (and plenty did).

There is a lot of very interesting material to post about which I’ve not had time for
l. A thermodynamic (rather than a chemical) explanation of temperature sensitivity of ion channels
2. The importance of a long terminal repeat of an endogenous retrovirus in our genome for the production of induced pluripotent stem cells (IPSCs)
3. A serious attack on the validity of some work which I posted on earlier http://luysii.wordpress.com/2014/02/23/are-memories-stored-outside-of-neurons/

Perhaps when we get back

Breaking benzene

Industrially to break benzene aromaticity in order to add an alkyl group using the Friedel Crafts reaction requires fairly hairy conditions — http://www.chemguide.co.uk/organicprops/arenes/fc.html e.g. pressure to keep everything liquid and temperatures of 130 – 160 Centigrade.

A remarkable paper [ Nature vol. 512 pp. 413 - 415 '14 ] uses a Titanium hydride catalyst and mild conditions (22 C — room temperature) for little over a day to form a titanium methylcyclopentenyl complex from benzene (which could be isolated) and studied spectroscopically.

The catalyst itself is rather beautiful. 3 titaniums, 6 hydrides and 3 C5Me4SiMe3 groups.

Benzene is the aromaticity workhorse of introductory organic chemistry. If you hydrogenate cyclohexene 120 kiloJoules is given off. Hydrogenating benzene should give off 360 kiloJoules, but because of aromatic stabilization only 208 is given off — implying that aromaticity lowers the energy of benzene by 152 kiloJoules. Clayden uses kiloJoules. I’m used to kiloCalories. To get them divide kiloJoules by 4.19.

What other magic does transition metal catalysis have in store?

A very UNtheoretical approach to cancer diagnosis

We have tons of different antibodies in our blood. Without even taking mutation into account we have 65 heavy chain genes, 27 diversity segments, and 6 joining regions for them (making 10,530) possibilities — then there are 40 genes for the kappa light chains and 30 for the lambda light chains or over 1,200 * 10,530. That’s without the mutations we know that do occur to increase antibody affinity. So the number of antibodies probably ramming around in our blood is over a billion (I doubt that anyone has counted then, just has no one has ever counted the neurons in our brain). Antibodies can bind to anything — sugars, fats, but we think of them as mostly binding to protein fragments.

We also know that cancer is characterized by mutations, particularly in the genes coding for proteins. Many of the these mutations have never been seen by the immune system, so they act as neoantigens. So what [ Proc. Natl. Acad. Sci. vo. 111 pp. E3072 - E3080 '14 ] did was make a chip containing 10,000 peptides, and saw which of them were bound by antibodies in the blood.

The peptides were 20 amino acids long, with 17 randomly chosen amino acids, and a common 3 amino acid linker to the chip. While 10,000 seems like a lot of peptides, it is a tiny fraction (actually 10^-18
of the 2^17 * 10^17 = 1.3 * 10^22 possible 17 amino acid peptides).

The blood was first diluted 500x so blood proteins other than antibodies don’t bind significantly to the arrays. The assay is disease agnostic. The pattern of binding of a given person’s blood to the chip is called an immunosignature.

What did they measure? 20 samples from each of five cancer cohorts collected from multiple geographic sites and 20 noncancer samples. A reference immunosignature was generated. Then 120 blinded samples from the same diseases gave 95$% classification accuracy. To investigate the breadth of the approach and test sensitivity, the immunosignatures 75% of over 1,500 historical samples (some over 10 years old) comprising 14 different diseases were used as training, then the other 25% were read blind with an accuracy of over 98% — not too impressive, they need to get another 1,500 samples. Once you’ve trained on 75% of the sample space, you’d pretty much expect the other 25% to look the same.

The immunosignature of a given individual consists of an overlay of the patterns from the binding signals of many of the most prominent circulating antibodies. Some are present in everyone, some are unique.

A 2002 reference (Molecular Biology of the Cell 4th Edition) states that there are 10^9 antibodies circulating in the blood. How can you pick up a signature on 10K peptides from this. Presumably neoAntigens from cancer cells elicit higher afifnity antibodies then self-antigens. High affiity monoclonals can be diluted hundreds of times without diminishing the signal.

The next version of the immunosignature peptide microArray under development contains over 300,000 peptides.

The implication is that each cancer and each disease produces either different antigens and or different B cell responses to common antigens.

Since the peptides are random, you can’t align the peptides in the signature to the natural proteomic space to find out what the antibody is reacing to.

It’s a completely atheoretical approach to diagnosis, but intriguing. I’m amazed that such a small sample of protein space can produce a significant binding pattern diagnostic of anything.

It’s worth considering just what a random peptide of 17 amino acids actually is. How would you make one up? Would you choose randomly giving all 20 amino acids equal weight, or would you weight the probability of a choice by the percentage of that amino acid in the proteome of the tissue you are interested in. Do we have such numbers? My guess is that proline, glycine and alanine would the most common amino acids — there is so much collagen around, and these 3 make up a high percentage of the amino acids in the various collagens we have (over 15 at least).

Physics to the rescue

It’s enough to drive a medicinal chemist nuts. General anesthetics are an extremely wide ranging class of chemicals, ranging from Xenon (which has essentially no chemistry) to the steroid alfaxalone which has 56 carbons. How can they possibly have a similar mechanism of action? It’s long been noted that anesthetic potency is proportional to lipid solubility, so that’s at least something to hang your hat on.

Other work has noted that enantiomers of some anesthetics vary in potency implying that they are interacting with something optically active (like proteins). However, you should note sphingosine which is part of many cell membrane lipids (gangliosides, sulfatides etc. etc.) contains two optically active carbons.

A great paper [ Proc. Natl. Acad. Sci. vol. 111 pp. E3524 - E3533 '14 ] notes that although Xenon has no chemistry it does have physics. It facilitates electron transfer between conductors (clearly a physical effect). The present work does some quantum mechanical calculations purporting to show that Xenon can extend the highest occupied molecular orbital (HOMO) of an alpha helix so as to bridge the gap to another helix.

This paper shows that Xe, SF6, NO and chloroform cause rapid increases in the electron spin content of Drosophila (probably another physical effect). The changes are reversible. Anesthetic resistant mutant strains (in what protein) show a different pattern of spin responses to anesthetic.

So they think general anesthetics might work by perturbing the electronic structure of proteins. It’s certainly a fresh idea.

What is carrying the anesthetic induced increase in spin? Speculations are bruited about. They don’t think the spin changes are due to free radicals. They favor changes in the redox state of metals. Could it be due to electrons in melanin (the prevalent stable free radical in flies). Could it be changes in spin polarization? Electrons traversing chiral materials can become spin polarized.

Why this should affect neurons isn’t known, and further speculations are given (1) electron currents in mitochondria, (2) redox reactions where electrons are used to break a disulfide bond.

Fascinating paper, and Mark Twain said it the best “There is something fascinating about science. One gets such wholesale returns of conjecture out of such a trifling investment of fact.”

Physics to the rescue

It’s enough to drive a medicinal chemist nuts. General anesthetics are an extremely wide ranging class of chemicals, ranging from Xenon (which has essentially no chemistry) to a steroid alfaxalone which has 56 carbons. How can they possibly have a similar mechanism of action? It’s long been noted that anesthetic potency is proportional to lipid solubility, so that’s at least something. Other work has noted that enantiomers of some anesthetics vary in potency implying that they are interacting with something optically active (like proteins). However, you should note sphingosine which is part of many cell membrane lipids (gangliosides, sulfatides etc. etc.) contains two optically active carbons.

A great paper [ Proc. Natl. Acad. Sci. vol. 111 pp. E3524 - E3533 '14 ] notes that although Xenon has no chemistry it does have physics. It facilitates electron transfer between conductors. The present work does some quantum mechanical calculations purporting to show that
Xenon can extend the highest occupied molecular orbital (HOMO) of an alpha helix so as to bridge the gap to another helix.

This paper shows that Xe, SF6, NO and chloroform cause rapid increases in the electron spin content of Drosophila. The changes are reversible. Anesthetic resistant mutant strains (in what protein) show a different pattern of spin responses to anesthetic.

So they think general anesthetics might work by perturbing the electronic structure of proteins. It’s certainly a fresh idea.

What is carrying the anesthetic induced increase in spin? Speculations are bruited about. They don’t think the spin changes are due to free radicals. They favor changes in the redox state of metals. Could it be due to electrons in melanin (the prevalent stable free radical in flies). Could it be changes in spin polarization? Electrons traversing chiral materials can become spin polarized.

Why this should affect neurons isn’t known, and further speculations are given (1) electron currents in mitochondria, (2) redox reactions where electrons are used to break a disulfide bond.

The article notes that spin changes due to general anesthetics differ in anesthesia resistant fly mutants.

Fascinating paper, and Mark Twain said it the best “There is something fascinating about science. One gets such wholesale returns of conjecture out of such a trifling investment of fact.”

Watch this space

I know far more about head trauma than any neurologist should. For three and a half years I worked with two active neurosurgeons covering a huge area of an eastern state. Our drawing radius ranged from 35 to 125 miles depending on direction. I was on first call every other night and weekend, and covered all the patients (including the neurosurgical ones) during those times. It’s amazing what you’ll do to get your kids through college. I was the first to see any head trauma cases that came in whether our service admitted them or not (multiple trauma cases usually went to general surgery and/or orthopedics, with out group following them as consultants).

So it’s time to talk about orbital (eye socket) fractures. This has great relevance for the case against Darren Wilson, the cop who killed Michael Brown. As far as I can tell, whether Wilson did or not sustain an orbital fracture is extremely controversial, with statements and denials all over the internet (most of them 5 -6 days old).

The truth of the matter will be very easy to establish once his X-rays (and CAT scans) are available. If Wilson sustained any head trauma at all, it is inconceivable to me that he didn’t have X-rays and CAT scans out the gazoo (technical term).

Some orbital fractures are very easy to see with a CAT scan, which shows bone beautifully. The orbit is adjacent to sinuses (air filled spaces) below and toward the nose. Fractures bleed. Normally the sinuses are filled with air which doesn’t stop X-rays, so they normally look black. Bone stops X-rays so they look white on CAT scan. Blood (or mucus) is very easy to see in a sinus on a CAT scan.

There is always a question about how old a fracture is, but if blood is found in a sinus adjacent to the fracture, you can conclude that the fracture is new.

Sometimes there is a sinus (the frontal sinus) above the orbit, but not always. The side of the orbit toward the ear is just bone.

So the data is out there somewhere. Watch this space for more interpretation should Wilson actually have sustained one.

The only other data available for all to see, are the convenience store videos, which show how Brown was acting shortly before he was killed. It isn’t pretty. I’m sure there are better links to it, so ignore the right wing chatter, and just look at the data. http://www.breitbart.com/Big-Government/2014/08/18/Michael-Brown-Allegedly-Bum-Rushed-Officer-Punched-Him-in-Face-Grabbed-Gun-Taunted-Him

Brown was big (reportedly 6′ 4” and 300 pounds), and the video shows him pushing a clerk who doesn’t even come up to his shoulder, when the clerk (who also appears to be a person of color) confronts him.

Follow

Get every new post delivered to your Inbox.

Join 68 other followers