We had to destroy the village in order to save it

What follows below is a post I wrote for “The Skeptical Chymist” two years ago.  It contains a rather spectacular claim, which I’ve not seen replicated or refuted since (if you know more about it, please comment).  The point of repeating it is to set you up for an even more spectacular claim published this month.  Unfortunately, there is some serious illness in the family and time is short, so I’ll post about the new claim next time (which may be a while).  We’ll see if Derek beats me to it.   I think both claims are correct   They rub our noses in how little we understand about what’s going on inside our cells. 

FEBRUARY 19, 2008

Chemiotics: We had to destroy the village to save it

Posted on behalf of Retread

An incredible article appeared last month in the journal Science. (see below for the abstract). If it can be verified and if it applies generally, our conception of just how genes coding for protein are turned on will be radically changed (yes, there are many other kinds of genes other than those coding for proteins). If DNA compaction, nucleosomes, histones, lysine methylation and demethylation, the histone code, nuclear hormone receptors (particularly the estrogen receptor), DNA glycosylase and topoisomerase aren’t old friends have a look at the first comment on this post for the background you need (it’s back on the Skeptical Chymist). Don’t worry, there is plenty of chemistry to follow.

Some histone code modifications are reversible, particularly acetylation of the epsilon amino group of lysine. Enzymes acetylating histone lysines are called histone acetylases, those removing it are called histone deacetylatases (HDACs). However, lysine methylation was thought to be permanent until ’04 when several enzymes able to demethylate lysine were found. One such enzyme is called LSD1 (it has nothing to do with the hallucinogen). It removes the two methyl groups from lysine #9 of histone #3 (H3K9me2). If this modification is present on a nucleosome near a gene, the gene is silenced, so the methyls must be removed so the protein it codes for can be made.

The estrogen receptor + estrogen complex bound to the ERE (the estrogen response element – a 15 nucleotide DNA sequence) triggers H3K9me2 removal. The process of demethylation is oxidative (how else would you split a nitrogen to hydrocarbon bond?). Hydrogen peroxide is produced, a loose cannon which oxidizes the juicy electron-rich bases of DNA nearby, forming in particular 8 oxo-guanine, as guanine is the most easily oxidized DNA base. Since 21% of the DNA bases in our genome are guanine, H2O2 doesn’t have far to look. This calls in some fairly heavy artillery (DNA glycosylase to remove the 8 oxo-guanine, topoisomerase IIbeta to unwind the DNA so it can be repaired, the repair enzymes, etc, etc…). Naturally this opens up the compacted DNA structure around the gene allowing RNA polymerase II to do its work transcribing the estrogen responsive gene into mRNA (once the damage is repaired).

So according to this paper, estrogen turns on gene transcription by damaging DNA. This is fantastic (if true). There’s more. The estrogen receptor is but one member of a group of proteins called nuclear hormone receptors. The name comes from the fact that other hormones (progesterone, androgen, thyroid, glucocorticoids, mineralocorticoids) have their own proteins that turn on (or turn off) genes the same way. Subsequently it was found that some vitamin metabolites (vitamin D3, vitamin A) have similar receptors even though they aren’t hormones. The human genome contains 48 such proteins. Less than half of them have known ligands. Those with known ligands have their finger in just about every metabolic pie in the cell.

One final point. It has been estimated that 8-oxoguanine is formed 100,000 times each day in every cell. Perhaps its formation is physiologic rather than pathologic. Where does that leave antioxidant therapy, which has been touted to do everything but cure hemorrhoids? Well, one such trial was done on 29,000 Finnish men at high risk for lung cancer (they were smokers) [New England J. Med. vol. 330 pp. 1029-1035 (1994)] Alpha tocopherol (one antioxidant used in the study) didn’t decrease the incidence of lung cancer, and there was an 18% higher incidence of lung cancer among the men receiving beta carotene (another antioxidant). In medicine, theory is great but data trumps it every time.

Science vol. 301 pp. 202 – 206 ’08, B. Perillo et. al. 

Modifications at the N-terminal tails of nucleosomal histones are required for efficient transcription in vivo. We analyzed how H3 histone methylation and demethylation control expression of estrogen-responsive genes and show that a DNA-bound estrogen receptor directs transcription by participating in bending chromatin to contact the RNA polymerase II recruited to the promoter. This process is driven by receptor-targeted demethylation of H3 lysine 9 at both enhancer and promoter sites and is achieved by activation of resident LSD1 demethylase. Localized demethylation produces hydrogen peroxide, which modifies the surrounding DNA and recruits 8-oxoguanine–DNA glycosylase 1 and topoisomeraseIIβ, triggering chromatin and DNA conformational changes that are essential for estrogen-induced transcription. Our data show a strategy that uses controlled DNA damage and repair to guide productive transcription.

Advertisements
Post a comment or leave a trackback: Trackback URL.

Comments

  • Wavefunction  On March 18, 2010 at 9:59 pm

    Of possible interest:
    “The hunt for 8-oxoguanine deaminase”
    J Am Chem Soc. 2010 Feb 17;132(6):1762-3

    More later.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: