Tag Archives: selfish gene

Virus 1 Astra Zenica vaccine 0

It’s already happened. A mutated pandemic virus has rendered a vaccine useless. This is serious — the game of cat and mouse with the mutating pandemic virus (otherwise known as natural selection) has begun. You can read all about it here

For a leisurely stroll through the background needed to understand the Science and Nature articles I’m going to essentially republish (and refurbish) a very recent  post — trying to make things as accessible as possible. 

The human species as a culture medium for the pandemic virus

Creationists or not, we are all about to get an unwanted lesson in natural selection and evolution, courtesy of the current pandemic virus (SARS-CoV-2).  This is going to be a long post, which will contain an incredible case of meningitis, thoughts on selfish genes in viruses, evolution, natural selection and why we’re in for a very, very long haul with the pandemic virus.

As you probably know, mutant pandemic viruses (all different) have emerged (in England, South Africa, Brazil).  Even worse they appear to be more infectious, and some are more resistant to our vaccines (all of which were made before they appeared).  

Here is lesson #1 in natural selection.  Viruses have no brains, they barely have a genome.  The human genome contains 3 billion positions, the pandemic virus 30,000.  So we have 100,000 times more information in our genome than the virus does. 100,000 is about the number of inches in a mile and half.  

So how is the virus outsmarting us?  Simply by reproducing like mad.  The molecular machines that copy our genome are very accurate, making about 1 mistake per 100,000,000 positions copied — that’s still enough for the average newborn to have 30 new mutations (more if the parents are older).  The viral machine is much less accurate.  So lots of genome mutations are made (meaning that the viral proteins made from the genome change slightly).  Those that elude the vaccines and antibodies we’re throwing at them survive and reproduce, most don’t.  This is natural selection in action. Survival of the fittest.  Darwin wasn’t kidding.

What is so remarkable about the British and the South African variants, is that they contain multiple mutations (23 in the British variant, at least 3 in the South African variant).  Usually its just one or two.

 You’ve probably heard about the mutation changing just one of the 147 amino acids  in hemoglobin to cause sickle cell anemia. Here’s another.  APOE is a 299 amino acid protein.  It comes in 3 variants  — due to changes at 2 positions.  One variant greatly increases the risk of Alzheimer’s disease, another decreases it.  So even single mutations can be quite powerful. 

So how did these multiple mutations come about?  We likely now have an answer due to one very well studied case [ Cell vol. 183 pp. 1901 – 1912 ’20 ] in an immunocompromised patient with chronic lymphatic leukemia (CLL). She shed the virus for 70 days.  Even so, she wasn’t symptomatic, but because the patient had enough immune system to fight the virus to a draw, it persisted, and so its genome was always changing.  The authors were smart enough to continually sequence the viral genome throughout the clinical course and watch it change.  So that’s very likely how the virus accumulates mutations, it lived for a long time in a patient who lived a long time with a weakened immune system allowing the virus to merrily mutate without being killed and allowing the weakened immune system to effectively select viruses it can’t kill. 

Could this happen again? Of course.   There are some 60,000 new cases of CLL each year in the USA.  Many of them have abnormal immune systems even before chemotherapy begins.

Here is an example from my own practice. The patient was a 40 year old high school teacher who presented with severe headache, stiff neck and drowsiness.  I did a spinal tap to get cerebrospinal fluid (CSF) for culture so we could find the best possible antibiotic to treat the organism.  This was 30+ years ago, and we had no DNA testing to tell us immediately what to do.  We had to wait 24 hours  while the bugs grew in culture to form enough that we could identify the species and determine  the antibiotics it was sensitive to. . 

As the fluid came out, I had a sinking feeling; as it was cloudy, implying lots of white cells fighting the infection. Enough white cells to make CSF cloudy (it normally looks like water) is a very bad sign. So after starting the standard antibiotic to be used in the first 24 hours before the cultures came back, I called the lab for the cell count.  They said there weren’t any.  I thought they’d seriously screwed up maybe losing what I’d sent or mislabeling it and looking at the wrong sample, and I unpleasantly stormed down to the lab (as only an angry physician can do) to see the spinal fluid.  They were right.  The cloudiness of the CSF was produced by hordes of bacteria not white cells.  This was even worse as clearly the bacteria were winning and the patient’s immune system was losing, and I never expected the patient to survive.  But survive he did and even left the hospital.  

Unfortunately, the meningitis turned out to be  the first symptom of an abnormal immune system due to a blood malignancy — multiple myeloma. 

****

Addendum 2 February — I sent this post to an old friend and college classmate who is now a hematology professor at a major med school.  He saw a similar case —

“When I was a medical student I saw a pediatric sickle anemia patient (asplenic) with fever and obtundation. When I looked at the methylene-blue stained CSF, I thought that stain had precipitated. So I obtained a fresh bottle of stain and it looked the same. Only this time, I looked more closely and what I thought was precipitated stain were TNTC pneumococci.

I urge all my immunosuppressed patient to get vaccinated for covid-19. I worry that if many people don’t get vaccinated,  those who do will not be that better off.”

Addendum 3 February– I asked him if his patient had survived like mine —

answer 

“Unfortunately, no. With the pneumococcus, If antibiotics are not started within 4 hours after recognition, the train has left the station.”

 

****

So there are millions of active cases of the pandemic, and tons of people with medical conditions (leukemia, multiple myeloma, chemotherapy for other cancer) with abnormal immune systems, just waiting for the pandemic virus to find a home and proliferate for days to weeks.  Literally these people are culture media for the virus. Not all of them have been identified, so don’t try to prevent this by withholding vaccination from the immunocompromised — they’re the ones who need it the most. 

I think we’re in for a very long haul with the pandemic.  We’re just gearing up to stay on top of the viral sequence du jour.   Genome sequencing is not routine (it should be).  The South African and British mutations were picked up because a spike in cases led people to sequence the virus from these patients.  Viral genome sequencing and surveillance should be routine in most countries and should not wait for an infection spike to occur. 

You may come across the terms B.1.351 and  507Y.V2 — they are different names for the South African virus which beat Astra Zenica.  The British variant is also called B.1.1.7

The human species as a culture medium for the pandemic virus

Creationists or not, we are all about to get an unwanted lesson in natural selection and evolution, courtesy of the current pandemic virus (SARS-CoV-2).  This is going to be a long post, which will contain an incredible case of meningitis, thoughts on selfish genes in viruses, evolution, natural selection and why we’re in for a very, very long haul with the pandemic virus.

As you probably know, mutant pandemic viruses (all different) have emerged (in England, South Africa, Brazil).  Even worse they appear to be more infectious, and some are more resistant to our vaccines (all of which were made before they appeared).  

Here is lesson #1 in natural selection.  Viruses have no brains, they barely have a genome.  The human genome contains 3 billion positions, the pandemic virus 30,000.  So we have 100,000 times more information in our genome than the virus does. 100,000 is about the number of inches in a mile and half.  

So how is the virus outsmarting us?  Simply by reproducing like mad.  The molecular machines that copy our genome are very accurate, making about 1 mistake per 100,000,000 positions copied — that’s still enough for the average newborn to have 30 new mutations (more if the parents are older).  The viral machine is much less accurate.  So lots of genome mutations are made (meaning that the viral proteins made from the genome change slightly).  Those that elude the vaccines and antibodies we’re throwing at them survive and reproduce, most don’t.  This is natural selection in action. Survival of the fittest.  Darwin wasn’t kidding.

What is so remarkable about the British and the South African variants, is that they contain multiple mutations (23 in the British variant).  Usually its just one or two.

 You’ve probably heard about the mutation changing just one of the 147 amino acids  in hemoglobin to cause sickle cell anemia. Here’s another.  APOE is a 299 amino acid protein.  It comes in 3 variants  — due to changes at 2 positions.  One variant greatly increases the risk of Alzheimer’s disease, another decreases it.  So even single mutations can be quite powerful. 

So how did these multiple mutations come about?  We likely now have an answer due to one very well studied case [ Cell vol. 183 pp. 1901 – 1912 ’20 ] in an immunocompromised patient with chronic lymphatic leukemia (CLL). She shed the virus for 70 days.  Even so, she wasn’t symptomatic, but because the patient had enough immune system to fight the virus to a draw, it persisted, and so its genome was always changing.  The authors were smart enough to continually sequence the viral genome throughout the clinical course and watch it change. 

Could this happen again.  Of course?   There are some 60,000 new cases of CLL each year in the USA.  Many of them have abnormal immune systems even before chemotherapy begins.

Here is an example from my own practice. The patient was a 40 year old high school teacher who presented with severe headache, stiff neck and drowsiness.  I did a spinal tap to get cerebrospinal fluid (CSF) for culture so we could find the best possible antibiotic to treat the organism.  This was 30+ years ago, and we had no DNA testing to tell us immediately what to do.  We had to wait 24 hours  while the bugs grew in culture to form enough that we could identify the species and determine  the antibiotics it was sensitive to. . 

As the fluid came out, I had a sinking feeling; as it was cloudy, implying lots of white cells fighting the infection. Enough white cells to make CSF cloudy (it normally looks like water) is a very bad sign. So after starting the standard antibiotic to be used in the first 24 hours before the cultures came back, I called the lab for the cell count.  They said there weren’t any.  I thought they’d seriously screwed up maybe losing what I’d sent or mislabeling it and looking at the wrong sample, and I unpleasantly stormed down to the lab (as only an angry physician can do) to see the spinal fluid.  They were right.  The cloudiness of the CSF was produced by hordes of bacteria not white cells.  This was even worse as clearly the bacteria were winning and the patient’s immune system was losing, and I never expected the patient to survive.  But survive he did and even left the hospital.  

Unfortunately, the meningitis turned out to be  the first symptom of an abnormal immune system due to a blood malignancy — multiple myeloma. 

****

Addendum 2 February — I sent this post to an old friend and college classmate who is now a hematology professor at a major med school.  He saw a similar case —

“When I was a medical student I saw a pediatric sickle anemia patient (asplenic) with fever and obtundation. When I looked at the methylene-blue stained CSF, I thought that stain had precipitated. So I obtained a fresh bottle of stain and it looked the same. Only this time, I looked more closely and what I thought was precipitated stain were TNTC pneumococci.

I urge all my immunosuppressed patient to get vaccinated for covid-19. I worry that if many people don’t get vaccinated,  those who do will not be that better off.”

Addendum 3 February– I asked him if his patient had survived like mine —

answer 

“Unfortunately, no. With the pneumococcus, If antibiotics are not started within 4 hours after recognition, the train has left the station.”

 

****

So there are millions of active cases of the pandemic, and tons of people with medical conditions (leukemia, multiple myeloma, chemotherapy for other cancer) with abnormal immune systems, just waiting for the pandemic virus to find a home and proliferate for days to weeks.  Literally these people are culture media for the virus. Not all of them have been identified, so don’t try to prevent this by withholding vaccination from the immunocompromised — they’re the ones who need it the most. 

I think we’re in for a very long haul with the pandemic.  We’re just gearing up to stay on top of the viral sequence du jour.   Genome sequencing is not routine (it should be).  The South African and British mutations were picked up because a spike in cases led people to sequence the virus from these patients.  Viral genome sequencing and surveillance should be routine in most countries  — not waiting on an infection spike. 

 

 

Junk that isn’t

The more we understand, the more we realize how little we’ve understood what we thought we understood.   Here is a double example.

We have 1,400,000 Alu elements in our genome.  They are about 300 nucleotides long, meaning that there is over 1 every 3,000 nucleotides in our 3,200,000,000 nucleotide genome.  They don’t code for protein, and were widely thought to be junk, selfish genes whose only role was to ensure that the organism carrying them, kept them along as they reproduced.

This post contains a heavy dose of contemporary molecular biology.  If you’re a little shaky on some of it have a look at — https://luysii.wordpress.com/2010/07/07/molecular-biology-survival-guide-for-chemists-i-dna-and-protein-coding-gene-structure/ — and follow the links.

Not so says Proc. Natl. Acad. Sci. vol. 117 pp. 415 – 425  ’20.  They are part of several important physiologic processes (1) T lymphocyte activation (2) heat shock stress (3) endoplasmic reticulum stress.  All 3 cause transcription of Alu’s by RNA polymerase III (pol III).

All RNA levels increase with heat shock, including RNAs made from Alu elements.  They bind directly and tightly (nanoMolar affinity) to RNA polymerase II (which transcribes protein coding genes) and co-occupy the promoters of repressed genes, preventing transcription of these genes and protein synthesis of them.  At least that was the state of play 11 years ago (PNAS 105 5569 – 5574 ’09)

This paper notes that Alu is not passive, but actually a self-cleaving ribozyme (an enzyme made of RNA), an entirely new role.  When complexed with another protein EZH2 (a polycomb protein thought to be a transcriptional repressor using its lysine methylation activity), the rate of Alu self-cleavage increases by 40%.

So what?

In addition to stoping transcription, Alu also retards transcription elongation.  So stress increases in EZH2 causes Alu to cleave itself faster, turning off  repression and improving the responses to the 3 types of stresses above.

So we really didn’t understand both Alu which has been studied for years, or EZH2 a polycomb protein (ditto).  Alu is a self-cleaving ribozyme, and EZH2 doesn’t just turn off genes by its enzymatic activity (lysine trimethylation), but binds to an RNA so it can cleave itself faster (e.g. its a cofactor).

Fascinating and humbling to see how much there is to know about things we thought we knew.  But it’s also exciting.  Who knows what else is out there to discover about the known, never mind the known unknowns.

We wouldn’t exist if retroviruses weren’t moving around in our genome.

Time for some of the excellent molecular biology I’ve put off writing about while I plow through the new Clayden.  I reached the halfway point today (p. 590) Exactly 2 months and 2 weeks after it arrived.  The chemist might need  some brushing up on DNA and messenger RNA before pushing on.  Pretty much all the background needed is found in https://luysii.wordpress.com/2010/07/07/molecular-biology-survival-guide-for-chemists-i-dna-and-protein-coding-gene-structure/ an d https://luysii.wordpress.com/2010/07/11/molecular-biology-survival-guide-for-chemists-ii-what-dna-is-transcribed-into/.

Everyone has heard of the AIDs virus.  It has so far been impossible to cure because it hides in our DNA doing next to nothing.  Tickle it in a variety of unknown ways, and it’s DNA is transcribed into messenger RNA (mRNA), the virus is assembled and goes on to wreak havoc with our immune system.  How does the AIDs virus get into our DNA in the first place?  Its genome is made of RNA, not DNA.  It has an enzyme (reverse transcriptase) which transcribes its RNA into DNA, and another enzyme (the integrate, which is actually a complex of proteins) which patches the DNA copy (called cDNA) into our genome.  That’s why we can’t get rid of it.  That’s also why it’s called a retrovirus — because of retrograde transcription of its RNA into cDNA).

Well, sorry to say, but at least 10% of our DNA is made of retrovirus remnants.  The vast majority of them have been crippled by mutation so their reverse transcriptases  don’t work any more, or there is something wrong with their integrase, etc. etc.  Some of them do make RNA copies of themselves however, but the copies are mutated enough that infectious virus doesn’t form.  But the RNA copies can be reverse transcribed  into cDNA and reinserted back into our DNA, and in a new site to boot.  This is why they are called retrotransposons.

The whole bunch of retroviruses, retrotransposons, and other repetitive elements of DNA have been called ‘junk’ by eminent authority.  Another epithet for them is the selfish gene — which exists only to reproduce itself.  Humans are said to be machines for reproducing human DNA.

Enter  [ Cell vol. 150 pp. 7 – 9, 29 – 38 ’12 ].  Now it’s time for some very human biology The fetus represents an immunologically different graft to the mother.  Half its antigens are tolerated because they are maternal, the paternal half are not likely to be.  Allogeneic means a transplant from a different member of the same species, so the fetus is regarded as semiallogeneic. 

So why doesn’t our immune system attack the placenta surrounding the fetus, which expresses the paternal proteins?  There’s probably a lot more to it but a class of immune cell called a regulatory T cell (Treg) shuts down the immune response wherever they are found, and the placenta has lots of them.

Different cells express different proteins, and Tregs are no exception. A transcription factor is something that binds to the DNA in front of a gene, turning on transcription of the gene,  ultimately increasing production of the protein the gene codes for. Specificity is obtained by the transcription factor binding to particular sequences of DNA, which are found in only in front of a subset of  genes

The transcription factor which turns on genes necessary to turn an immune cell into a Treg is called Foxp3.  Foxp3 is a protein and to have lots of it around the gene for it must be turned on so its mRNA can be made.  Guess what?  This means that other transcription factors must bind in front the Foxp3 gene.
Here’s Jonathan Swift on the subject
So nat’ralists observe, a flea
Hath smaller fleas that on him prey,
And these have smaller fleas that bite ’em,
And so proceed ad infinitum.”

An important protein like Foxp3 is highly controlled.  There are 3 distinct regions in front of the gene were other transcription factors and repressors of transcription bind.  They are called conserved nonCoding sequences (CNSs), an oxymoron, because they are clearly coding for something quite important. The 3 sequences are called CNS1, CNS2 and CNS3.    Technology has progressed to the point where we can remove just about any DNA sequence from the mouse genome we wish (the resultant mice are called knockout mice).  

Anyway if you knockout CNS1 the mice resorb semiallogenic fetuses (where the father and the mother aren’t genetically related), but not allogenic fetuses (where the genomes of the father and the mother are pretty much the same due to inbreeding).  It’s possible to trace Foxp3 far back in evolution.  Only animals with placentas (eutherians) have CNS1 in addition to CNS2 and CNS3. Marsupials, which don’t have placentas, just have CNS2 and CNS3. 

So where do retrotransposons come in?  The structure of CNS1 shows that it is a retrotransposon which moved in front of the Foxp3 gene.  It mutated enough for a new and different set of transcription factors to bind to it and turn on Foxp3 expression in the placenta allowing survival of the fetus.  Some Junk DNA indeed !