Tag Archives: ribosome

A moonlighting quorum sensing molecule

Bacteria talk to each other using quorum sensing molecules. Although the first one was found 50 years ago, the field really opened up with the work of Bonnie Bassler at Princeton in the 90s. These are small molecules which bacteria secrete, so that when there are a lot of bacteria around, the concentration of quorum sensors rises, allowing them to get into bacteria (by the law of mass action) changing gene expression for a variety of things, particularly virulence and biofilm formation. They have also been used by bacteria to compete with those of a different species.  There was a lot of hope, that we could control some nasty bugs (such as Pseudomonas) by messing about with their quorum sensors, but it hasn’t panned out. 

The real surprise came in a paper [ Proc. Natl. Acad. Sci. vol. 118 e2012529118  ’21 ]showing that Pseudomonas uses one of its quorum sensing molecules (C12 < N-3-oxo-dodecanoyl) homoserine lactone > ) inside the eukaryotic cells it attacks. 

What it does once inside, is to attack a cellular organelle I’ve (and probably you) never heard of called vaults.  They’s been known since ’86, and given their size (12.9 megaDaltons) I’m surprised I’d never heard of them.  The likely reason is that no one knows what their function is. 

It is made of just 3 proteins

l. MVP — Major Vault Protein, mass 100 kiloDaltons 96 copies/vault

2. VPARP — Vault poly ADP ribose polymerase 190 kiloDaltons

3. Telomerase associated protein 290 kiloDaltons.

Human vaults contain 4 different RNAs (called, naturally enough vault RNAs < vtRNAs >).  They are 88 – 100 nucleotides long.  

Vaults look like a hand grenades and are 670 Angstroms long and 400 Angstroms in maximum diameter. 

[ Cell vol. 176 pp. 1054 – 1067 ’19 ] says that there can be 10,000 to 100,000 vaults/cell.  So why haven’t I seen them?

One of the vtRNAs binds to a protein involved in autophagy inhibiting it. This is an example of an RNA binding to a protein altering its function, something unusual until you think of the ribosome or the spliceosome. Starvation decreases the number of vaults inducing autophagy.

Once pseudomonas C12 gets into a cell it binds to the Major Vault Protein, causing its translocation into lipid rafts, the net effect being attenuation of the p38 protein kinase pathway to attenuate programmed cell death (apoptosis).  

So C12 keeps the cell alive when normally it would die.  A lot of recent work has shown that bacteria infiltrate cancers.  Do they do something similar to cancer cells to keep them alive. 

It really makes you humble (or should) to realize how many separate parts of cellular and molecular biology you must understand to even hope to understand how cells (and bacteria) go about their business. 

Think of how many terms were introduced to understand what the humble quorum sensor C12 is up to. 

Why drug development is hard #30 — more new interactions we had no idea existed

We’re full of proteins which bind RNA wrangling it into a desired conformation.  The ribosome (whose enzymatic business end is pure RNA) has a mere 80 proteins doing this.  Its mass is 4,300,000 times that of a hydrogen atom.  However the idea that RNA could return the favor was pretty much unheard of until [ Science vol. 358 pp. 993 – 994, 1051 – 1055 ’17 — http://science.sciencemag.org/content/358/6366/1051 ].

As is often the case, viruses and the RNA world continue to instruct us.  In order to survive, some viruses induce cells to express a long (2,200+ nucleotides) nonCoding (for protein that is) RNA called lncRNA-ACOD1.   It binds to a protein enzyme (called GOT2, for Glutamic acid OxaloAcetic Transaminase 2) increasing its catalytic efficiency.  This shifts cellular metabolism around making it more favorable for virus proliferation, as GOT2 is found in mitochondria being used to replenish tricarboxylic cycle intermediates — e.g. making more energy available to the virus.

lncRNA-ACOD1 is induced by a variety of viruses, most importantly influenza virus in man, and vaccinia, herpes simplex 1, vesicular stomatitis virus in mice.  Exactly how viruses induce it isn’t clear, but the transcription factor NFkappaB is involved.

Viruses continue to teach us.  The amino acids of GOT2 (#15 – #68) and the interacting sequence of nucleotides in lncRNA-ACOD1 (#165 – #390) are well conserved across species.  This might be a primordial mechanism from the RNA world (forgotten but not gone) to produce ATP production to compe with metabolic stress.   The RNA/protein binding site is close (4.2 Angstroms) to the substrate binding site.

The fun is just starting as several other lncRNAs are induced by viruses.  You can only imagine what they will tell us.  Another set of drug targets perhaps, or worse, the cause of peculiar side effects from drugs already in use.

Why drug discovery is hard #29 — a very old player doing a very new thing

We all know what RNA does don’t we?  It binds to other RNAs and to DNA.  Sure lots of new forms of RNA have been found: microRNAs, competitive endogenous RNA (ceRNA), long nonCoding (for protein) RNA (lncRNA), piwiRNAs, small interfering RNAs (siRNAs), . .. The list appears endless.  But the basic mechanism of action of RNA in the cell is binding to some other polynucleotide (RNA or DNA) and affecting its function.

Not so fast.  A new paper http://science.sciencemag.org/content/358/6366/1051 describes  lncRNA-ACOD1, a cellular RNA induced by a variety of viruses.  lncRNA-ACOD1 binds to an enzyme enhancing its catalytic efficiency.  Now that’s new.  Certainly RNAs and proteins bind to each other in the ribosome, and in RNAase P, but here the proteins serve to structure the RNA so it can carry out its catalytic function, not the other way around.

The enzyme bound is called GOT2 (Glutamic Oxaloacetic Transaminase 2).  Much interesting cellular biochemistry is discussed in the paper which I’ll skip, except to say that the virus uses the hyped up GOT2 to repurpose the cell’s metabolic machinery for its own evil ends.

lncRNA-ACOD1 has 3 exons and a polyAdenine tail.  There are two transcript variants containing  2,330 and 2,259 nucleotides.  There are only 100 copies/cell.  lncRNA-ACOD1 nucleotides #165 – #390 bind to amino acids #54 – #68 of GOT2.

So what are the other 2000 or so nucleotides of lncRNA-ACOD1 doing?   The phenomenon of RNA binding to protein is quite likely to be more widespread.  Both the GOT2 interacting motif and the interacting sequence of lncRNA-ACOD1 are well conserved across species of hosts and viruses.

Although viruses co-opt lncRNA-ACOD1, it is normally expressed in the heart as is GOT2 with no viral infection at all.  So we have likely stumbled onto an entirely new method of cellular metabolic control, AND a whole new set of players and interactions for drugs to act on (if they aren’t already doing this unknown to us).

This is series member #29 of why drug development is hard, most of which concentrated on the fact that we don’t know all the players.  lncRNA-ACOD1 is different — RNA is a player we’ve known for a very long time  but it appears to be playing a game entirely new to us.

It is also good to see cutting edge research like this coming out of China.  Hopefully it will stand up, but enough questionable stuff has come from them that every Chinese paper is under a cloud.

This is why I love reading the current literature.  You never know what you’re going to find.  It’s like opening presents.

Why you do and don’t need chemistry to understand why we have big brains

You need some serious molecular biological chops to understand why primates such as ourselves have large brains. For this you need organic chemistry. Or do you? Yes and no. Yes to understand how the players are built and how they interact. No because it can be explained without any chemistry at all. In fact, the mechanism is even clearer that way.

It’s an exercise in pure logic. David Hilbert, one of the major mathematicians at the dawn of the 20th century famously said about geometry — “One must be able to say at all times–instead of points, straight lines, and planes–tables, chairs, and beer mugs”. The relationships between the objects of geometry were far more crucial to him than the objects themselves. We’ll take the same tack here.

So instead of the nucleotides Uridine (U), Adenine (A), Guanine (G), Cytosine (C), we’re going to talk about lock and key and hook and eye.

We’re going to talk about long chains of these four items. The order is crucial Two long chains of them can pair up only only if there are segments on each where the locks on one pair with the keys on the other and the hooks with the eyes. How many possible combinations of the four are there on a chain of 20 — just 4^20 or 2^40 = 1,099,511,621,776. So to get two randomly chosen chains to pair up exactly is pretty unlikely, unless in some way you or the blind Watchmaker chose them to do so.

Now you need a Turing machine to take a long string of these 4 items and turn it into a protein. In the case of the crucial Notch protein the string of locks, keys, hooks and eyes contains at least 5,000 of them, and their order is important, just as the order of letters in a word is crucial for its meaning (consider united and untied).

The cell has tons of such Turing machines (called ribosomes) and lots of copies of strings coding for Notch (called Notch mRNAs).

The more Notch protein around in the developing brain, the more the proliferating precursors to neurons proliferate before differentiating into neurons, resulting in a bigger brain.

The Notch string doesn’t all code for protein, at one end is a stretch of locks, keys, hooks and eyes which bind other strings, which when bound cause the Notch string to be degraded, mean less Notch and a smaller brain. The other strings are about 20 long and are called microRNAs.

So to get more Notch and a bigger brain, you need to decrease the number of microRNAs specifically binding to the Notch string. One particular microRNA (called miR-143-3p) has it in for the Notch string. So how did primates get rid of miR-143-3p they have an insert (unique to them) in another string which contains 16 binding sites for miR-143-3p. So this string called lincND essentially acts as a sponge for miR-143-3p meaning it can’t get to the Notch string, meaning that neuronal precursor cells proliferate more, and primate brains get bigger.

So can you forget organic chemistry if you want to understand why we have big brains? In the above sense you can. Your understanding won’t be particularly rich, but it will be at a level where chemical explanation is powerless.

No amount of understanding of polyribonucleotide double helices will tell you why a particular choice out of the 1,099,511,621,776 possible strings of 20 will be important. Literally we have moved from physicality to the realm of pure ideas, crossing the Cartesian dichotomy in the process.

Here’s a copy of the original post with lots of chemistry in it and all the references you need to get the molecular biological chops you’ll need.

Why our brains are large: the elegance of its molecular biology

Primates have much larger brains in proportion to their body size than other mammals. Here’s why. The mechanism is incredibly elegant. Unfortunately, you must put a sizable chunk of recent molecular biology under your belt before you can comprehend it. Anyone can listen to Mozart without knowing how to read or write music. Not so here.

I doubt that anyone can start from ground zero and climb all the way up, but here is all the background you need to comprehend what follows. Start here — https://luysii.wordpress.com/2010/07/07/molecular-biology-survival-guide-for-chemists-i-dna-and-protein-coding-gene-structure/
and follow the links (there are 5 more articles).

Also you should be conversant with competitive endogenous RNA (ceRNA) — here’s a link — https://luysii.wordpress.com/2014/01/20/why-drug-discovery-is-so-hard-reason-24-is-the-3-untranslated-region-of-every-protein-a-cerna/

Also you should understand what microRNAs are — we’re still discovering all the things they do — here’s the background you need — https://luysii.wordpress.com/2015/03/22/why-drug-discovery-is-so-hard-reason-26-were-discovering-new-players-all-the-time/weith.

Still game?

Now we must delve into the embryology of the brain, something few chemists or nonbiological type scientists have dealt with.

You’ve probably heard of the term ‘water on the brain’. This refers to enlargement of the ventricular system, a series of cavities in all our brains. In the fetus, all nearly all our neurons are formed from cells called neuronal precursor cells (NPCs) lining the fetal ventricle. Once formed they migrate to their final positions.

Each NPC has two choices — Choice #1 –divide into two NPCs, or Choice #2 — divide into an NPC and a daughter cell which will divide no further, but which will mature, migrate and become an adult neuron. So to get a big brain make NPCs adopt choice #1.

This is essentially a choice between proliferation and maturation. It doesn’t take many doublings of a NPC to eventually make a lot of neurons. Naturally cancer biologists are very interested in the mechanism of this choice.

Well to make a long story short, there is a protein called NOTCH — vitally important in embryology and in cancer biology which, when present, causes NPCs to make choice #1. So to make a big brain keep Notch around.

Well we know that some microRNAs bind to the mRNA for NOTCH which helps speed its degradation, meaning less NOTCH protein. One such microRNA is called miR-143-3p.

We also know that the brain contains a lncRNA called lncND (ND for Neural Development). The incredible elegance is that there is a primate specific insert in lncND which contains 16 (yes 16) binding sites for miR-143-3p. So lncND acts as a sponge for miR-143-3p meaning it can’t bind to the mRNA for NOTCH, meaning that there is more NOTCH around. Is this elegant or what. Let’s hear it for the Blind Watchmaker, assuming you have the faith to believe in such things.

Fortunately lncND is confined to the brain, otherwise we’d all be dead of cancer.

Should you want to read about this, here’s the reference [ Neuron vol. 90 pp. 1141 – 1143, 1255 – 1262 ’16 ] where there’s a lot more.

Historically, this was one of the criticisms of the Star Wars Missile Defense — the Russians wouldn’t send over a few missles, they’d send hundreds which would act as sponges to our defense. Whether or not attempting to put Star Wars in place led to Russia’s demise is debatable, but a society where it was a crime to own a copying machine, could never compete technically to produce such a thing.

Are you as smart as the (inanimate) blind watchmaker

Here’s a problem the cell has solved. Can you? Figure out a way to send a protein to two different membranes in the cell (the membrane encoding it { aka the plasma membrane }, and the endoplasmic reticulum) in the proportions you wish.

The proteins must have exactly the same sequence and content of amino acids, ruling out alternative splicing of exons in the mRNA (if this is Greek to you have a look at the following post — https://luysii.wordpress.com/2012/01/09/molecular-biology-survival-guide-for-chemists-v-the-ribosome/ and the others collected under — https://luysii.wordpress.com/category/molecular-biology-survival-guide/).

The following article tells you how the cell does it. Recall that not all of the messenger RNA (mRNA) is translated into protein. The ribosome latches on to the 5′ end of the mRNA,  subsequently moving toward the 3′ end until it finds the initiator codon (AUG which codes for methionine). This means that there is a 5′ untranslated region (5′ UTR). It then continues moving 3′ ward stitching amino acids together.  Similarly after the ribosome reaches the last codon (one of 3 stop codons) there is a 3′ untranslated region (3′ UTR) of the mRNA. The 3′ UTR isn’t left alone but is cleaved and a polyAdenine tail added to it. The 3′ UTR is where most microRNAs bind controlling mRNA stability (hence the amount of protein produced from a given mRNA).

The trick used by the cell is described in [ Nature vol. 522 pp. 363 – 367 ’15 ]. The 3’UTR is alternatively processed producing a variety of short and long 3’UTRs. One such protein where this happens is CD47 — which is found on the surface of most cells where it stops the cell from being eaten by scavenger cells such as macrophages. The long 3′ UTR of CD47 allows efficient cell surface expression, while the short 3′ UTR localizes it to the endoplasmic reticulum.

How could this possibly work? Once the protein is translated by the ribosome, it leaves the ribosome and the mRNA doesn’t it? Not quite.

They say that the long 3′ UTR of CD47 acts as a scaffold to recruit a protein complex which contains HuR (aka ELAVL1), an RNA binding protein and SET to the site of translation. The allows interaction of SET with the newly translated cytoplasmic domains of CD47, resulting in subsequent translocation of CD47 to the plasma membrane via activated RAC1.

The short 3′ UTR of CD47 doesn’t have the sequence binding HuR and SET, so CD47 doesn’t get to the plasma membrane, rather to the endoplasmic reticulum.

The mechanism may be quite general as HuR binds to thousands of mRNAs. The paper gives two more examples of proteins where this happens.

It’s also worth noting that all this exquisite control, does NOT involve covalent bond formation and breakage (e.g. not what we consider classic chemical reactions). Instead it’s the dance of one large molecular object binding to another in other ways. The classic chemist isn’t smiling. The physical chemist is.

The most interesting paper I’ve read in the past 5 years — finale

Recall from https://luysii.wordpress.com/2013/06/13/the-most-interesting-paper-ive-read-in-the-past-5-years-introduction-and-allegro/ that if you knew the ones and zeroes coding for the instruction your computer was currently working on you’d know exactly what it would do. Similarly, it has long been thought that, if you knew the sequence of the 4 letters of the genetic code (A, T, G, C) coding for a protein, you’d know exactly what would happen. The cellular machinery (the ribosome) producing output (a protein in this case) was thought to be an automaton similar to a computer blindly carrying out instructions. Assuming the machinery is intact, the cellular environment should have nothing to do with the protein produced. Not so. In what follows, I attempt to provide an abbreviated summary of the background you need to understand what goes wrong, and how, even here, environment rears its head.

If you find the following a bit terse, have a look at the https://luysii.wordpress.com/category/molecular-biology-survival-guide/ . In particular the earliest 3 articles (Roman numerals I, II and III) should be all you need).

We’ve learned that our DNA codes for lots of stuff that isn’t protein. In fact only 2% of it codes for the amino acids comprising our 20,000 proteins. Proteins are made of sequences of 20 different amino acids. Each amino acid is coded for by a sequence of 3 genetic code letters. However there are 64 possibilities for these sequences (4 * 4 * 4). 3 possibilities tell the machinery to quit (they don’t code for an amino acid). So some amino acids have as many as 6 codons (sequences of 3 letters) for them — e.g. Leucine (L) has 6 different codons (synonymous codons) for it while Methionine (M) has but 1. The other 18 amino acids fall somewhere between.

The cellular machine making proteins (the ribosome) uses the transcribed genetic code (mRNA) and a (relatively small) adapter, called transfer RNA (tRNA). There are 64 different tRNAs (61 for each codon specifying an amino acid and 3 telling the machine to stop). Each tRNA contains a sequence of 3 letters (the antiCodon) which exactly pairs with the codon sequence in the mRNA, the same way the letters (bases if you’re a chemist) in the two strands of DNA pair with each other. Hanging off the opposite end of each tRNA is the amino acid the antiCodon refers to. The ribosome basically stitches two amino acids from adjacent tRNAs together and then gets rid of one tRNA.

So which particular synonymous codon is found in the mRNA shouldn’t make any difference to the final product of the ribosome. That’s what the computer model of the cell tells us.

Since most cells are making protein all the time. There is lots of tRNA around. We need so much tRNA that instead of 64 genes (one for each tRNA) we have some 500 in our genome. So we have multiple different genes coding for each tRNA. I can’t find out how many of each we have (which would be very nice to know in what follows). The amount of tRNA of each of the 64 types is roughly proportional to the number of genes coding for it (the gene copy number) according to the papers cited below.

This brings us to codon usage. You have 6 different codons (synonymous codons) for leucine. Are they all used equally (when you look at every codon in the genome which codes for leucine)? They are not. Here are the percentages for the usages of the 6 distinct leucine codons in human DNA: 7, 7, 13, 13, 20, 40. For random use they should all be around 16. The most frequently appearing codon occurs as often as the least frequently used 4.

It turns out the the most used synonymous codons are the ones with the highest number of genes for the corresponding tRNA. Makes sense as there should be more of that synonymous tRNA around (at least in most cases) This is called codon bias, but I can’t seem to find the actual numbers.

This brings us (at last) to the actual paper [ Nature vol. 495 pp. 111 – 115 ’13 ] and the accompanying editorial (ibid. pp. 57 – 58). The paper says “codon-usage bias has been observed in almost all genomes and is thought to result from selection for efficient and accurate translation (into protein) of highly expressed genes” — 3 references given. Essentially this says that the more tRNA around matching a particular codon, the faster the mRNA will find it (le Chatelier’s principle in action).

An analogy at this point might help. When I was a kid, I hung around a print shop. In addition to high speed printing, there was also a printing press, where individual characters were selected from boxes of characters, placed on a line (this is where the font term leading comes from), and baked into place using some scary smelling stuff. This was so the same constellation of characters could be used over and over. For details see http://en.wikipedia.org/wiki/Printing_press. You can regard the 6 different tRNAs for leucine as 6 different fonts for the letter L. To make things right, the correct font must be chosen (by the printer or the ribosome). Obviously if a rare font is used, the printer will have to fumble more in the L box to come up with the right one. This is exactly le Chatelier’s principle.

The papers concern a protein (FRQ) used in the circadian clock of a fungus — evolutionarily far from us to be sure, but hang in there. Paradoxically, the FRQ gene uses a lot of ‘rare’ synonymous codons. Given the technology we have presently, the authors were able to switch the ‘rare’ synonymous codons to the most common ones. As expected, the organism made a lot more FRQ using the modified gene.

The fascinating point (to me at least) is that the protein, with exactly the same amino acids did not fulfill its function in the circadian clock. As expected there was more of the protein around (it was easier for the ribosome machinery to make).

Now I’ve always been amazed that the proteins making us up have just a few shapes, something I’d guess happens extremely rarely. For details see https://luysii.wordpress.com/2010/10/24/the-essential-strangeness-of-the-proteins-that-make-us-up/.

Well, as we know, proteins are just a linear string of amino acids, and they have to fold to their final shape. The protein made by codon optimization must not have had the proper shape. Why? For one thing the protein is broken down faster. For another it is less stable after freeze thaw cycles. For yet another, it just didn’t work correctly in the cell.

What does this mean? Most likely it means that the protein made from codon optimized mRNA has a different shape. The organism must make it more slowly so that it folds into the correct shape. Recall that the amino acid chain is extruded from one by one from the ribosome, like sausage from a sausage making machine. As it’s extruded the chain (often with help from other proteins called chaperones) flops around and finds its final shape.

Why is this so fascinating (to me at least)? Because here,in the very uterus of biologic determinism, the environment (how much of each type of synonymous tRNA is around) rears its head. Forests have been felled for papers on the heredity vs. environment question. Just as American GIs wrote “Kilroy was here” everywhere they went in WWII, here’s the environment popping up where no one thought it would.

In addition the implications for protein function, if this is a widespread phenomenon, are simply staggering.

Molecular Biology Survival Guide for Chemists — V: The Ribosome

The ribosome is where the rubber meets the road (in the protein-centric view of the cell).  It is a monstrously large molecular machine 200 – 300 Angstroms in diameter.  Remember that the diameter of the double helix is only 20 Angstroms.   It takes messenger RNA (mRNA) and, using it as a code translates the sequence of nucleotides into a sequence of amino acids (e.g. a protein).  Get a copy of the 16 December ’11 issue of Science, and stare at the cover for a while.  It’s a picture of the eukaryotic (yeast) ribosome in all its glory. The details are to be found [ Science vol. 334 pp. 1524 – 1539 ’11 ].  If you have an issue hanging around. around also look at pp. 1509 – 1510, as some ribosomal background is required before a post on that subject.

The article gives the structure of the Saccharomyces cerevisiae ribosome at 3 Angstroms resolution.  Quite a feat.  It comes in two parts, a large subunit which sediments at 60 Svedberg units, and a ‘small’ one at 40S.

The large subunit contains 3 RNA molecules and 46 proteins, the small one contains 1 RNA and 33 proteins.  Total molecular mass is around 2.5 megadaltons.  It’s maddening, but I can’t seem to find out just how many nucleotides our ribosomal RNAs (rRNAs) contain in toto.  It is well over 5,000 however.   So the number of atoms in the RNAs alone is over 200,000.  There must be many more atoms than that contained in the associated proteins, as the phosphates have a mass of 98, the ribose 115, the pyrmidines around 100.  So they don’t account for more than 40% of the total ribosomal mass.  If anyone can give me exact numbers, I’ll update this.

The actual catalysis is not accomplished by the 79 proteins, but by the RNAs themselves.  This is thought to be a living relic of an RNA world where life actually began.  The proteins are mostly found on the surface of the ribosome.

There are a gigantic number of things to say about the ribosome, but I’m just going to put in the facts needed so pure chemist types can read other posts. This post will be expanded as necessary when further background is needed.

Amino acids are linked together (the rate is only 2 – 6 per second) by the beast. This is OK as the average cell has over 10 million ribosomes (neurons probably have more).  The article above notes that most of the changes between the ribosome of bacteria and that of celled organisms (eukaryotes) make our ribosomes bigger.  The proteins are bigger, the rRNAs are longer.

The actual synthesis of proteins takes place deep in the center of the ribosome, where the two subunits come together.  How does the protein get out?  It is extruded (like sausage) through the exit tunnel, which is 100 Angstroms long in the E. Coli ribosome, where it’s diameter varies between 10 to 20 Angstroms.  Since the alpha helix is 11 Angstroms wide, this means that little if any other secondary structures (beta turns, beta sheets) and no tertiary structure at all can form within it.  It’s probably longer (and possibly wider) in our ribosomes.