Tag Archives: presenilin1

Maybe the senile plaque really is a tombstone

“Thinking about pathologic changes in neurologic disease has been simplistic in the extreme.  Intially both senile plaques and neurofibrillary tangles were assumed to be causative for Alzheimer’s.  However there are 3 possible explanations for any microscopic change seen in any disease.  The first is that they are causative (the initial assumption).  The second is that they are a pile of spent bullets, which the neuron uses to defend itself against the real killer.  The third is they are tombstones, the final emanations of a dying cell.” I’ve thought this way for years, and the quote is from 2012: https://luysii.wordpress.com/2012/07/26/research-on-alzheimers-disease-the-bad-news-the-good-news/.

We now have some evidence that the senile plaque may be just a tombstone marking a dead neuron. Certainly attempts to remove the plaques haven’t helped patients despite billions spent in the attempt.

A recent paper [ Proc. Natl. Acad. Sci. vol. 117 pp. 28625–28631 ’20 –https://www.pnas.org/content/pnas/117/46/28625.full.pdf ] not only provides a new way to look at Alzheimer’s disease, but immediately suggests (to me at least) a way to test the idea. If the test proves correct, it will turn the focus of Alzheimer disease research on its ear.

Not to leave anyone behind, the senile plaque is largely made of a small fragment (the aBeta peptide 40 or 42 amino acids) from a much larger protein (the amyloid precursor protein [ APP ] — with well over 800 amino acids). Mutations in APP with the net effect of producing more aBeta are associated with familial Alzheimer’s disease, as are mutations in the enzymes chopping up APP to form Abeta (presenilin1, etc.).

The paper summarizes some evidence that the real culprit is neuronal uptake of the Abeta peptide either as a monomer, or a collection of monomers (an oligomer) or even the large aggregate of monomers seen under the microscope as the senile plaque.

The paper gives clear evidence that a 30 amino acid fragment of Abeta by itself without oligomerization can be taken up by neurons. Not only that but they found the protein on neuronal cell surface that Abeta binds to as well.

Ready to be shocked?

The protein taking Abeta into the neuron is the prion protein (PrPC) which can cause mad cow disease, wasting disease of elk and all sorts of horrible neurologic diseases among them Jakob Creutzfeldt disease.

Now to explain a bit of the jargon which follows. The amino acids making up our proteins come in two forms which are mirror images of each other. All our amino acids are of the L form, but the authors were able to synthesize the 42 amino acid Abeta peptide (Abeta42 below) using all L or all D amino acids.

It’s time to let the authors speak for themselves.

“In previous experiments we compared toxicity of L- and D-Aβ42. We found that, under conditions where L-Aβ42 reduced cell viability over 50%, D-Aβ42 was either nontoxic (PC12) or under 20% toxic . We later showed that L-Aβ is taken up approximately fivefold more efficiently than D-Aβ (28), suggesting that neuronal Aβ uptake and toxicity are linked.”

Well, if so, then the plaque is the tombstone of a neuron which took up too much Abeta.

Well how could you prove this? Any thoughts?

Cell models are nice, but animal models are probably better (although they’ve never resulted in useful therapy for stroke despite decades of trying).

Enter the 5xFAD mouse — it was engineered to have 3 mutations in APP known to cause Familial Alzheimer’s Disease + 2 more in Presenilin1 (which also cause FAD). The poor mouse starts getting Abeta deposition in its brain under two months of age (mice live about two years).

Now people aren’t really sure just what the prion protein (PrPC) actually does, and mice have been made without it (knockout mice). They are viable and fertile, and initially appear normal, but abnormalities appear as the mouse ages if you look hard enough. But still . . .

So what?

Now either knock out the PrPC gene in the 5xFAD mouse or mate the two different mouse strains.

The genes (APP, presenilin1 and PrPC) are on different chromosomes (#21, #14 and #20 respectively). So the first generation (F1) will have a normal counterpart of each of the 3 genes, along with a pathologic gene (e.g. they will be heterozygous for the 3 genes).

When members of F1 are bred with each other we’d expect some of them to have all mutant genes. If it were only 2 genes on two chromosomes, we’d expect 25% of he offspring (F2 generation) to have all abnormal genes. I’ll leave it for the mathematically inclined to figure out what the actual percentage of homozygous abnormal for all 3 would be).

What’s the point? Well, it’s easy to measure just what genes a mouse is carrying, so it’s time to look at mice with a full complement of 5xFAD genes and no PrPC.

If these mice don’t have any plaques in their brains, it’s game, set and match. Alzheimer research will shift from ways to remove the senile plaque, to ways to prevent it by inhibiting cellular uptake of the abeta peptide.

What could go wrong? Well, their could be other mechanisms and other proteins involved in getting Abeta into cells, but these could be attacked as well.

If the experiment shows what it might, this would be the best Thanksgiving present I could imagine.

So go to it. I’m an 80+ year old retired neurologist with no academic affiliation. I’d love to see someone try it.

Technology marches on — or does it?

Technology marches on — perhaps.  But it certainly did in the following Alzheimer’s research [ Neuron vol. 104 pp. 256 – 270 ’19 ] .  The work used (1) CRISPR (2) iPSCs (3) transcriptomics (4) translatomics to study Alzheimer’s.  Almost none of this would have been possible 10 years ago.

Presently over 200 mutations are known in (1) the amyloid precursor protein — APP (2) presenilin1 (3) presenilin2.  The presenilins are components of the gamma secretase complex which cleaves APP on the way to the way to the major components of the senile plaque, Abeta40 and Abeta42.

There’s a lot of nomenclature, so here’s a brief review.  The amyloid precursor protein (APP) comes in 3 isoforms containing 770, 751 and 695 amino acids.  APP is embedded in the plasma membrane with most of the amino acids extracellular.  The crucial enzyme for breaking APP down is gamma secretase, which cleaves APP inside the membrane.  Gamma secretase is made of 4 proteins, 2 of which are the presenilins.  Cleavage results in a small carboxy terminal fragment (which the paper calls beta-CTF) and a large amino terminal fragment. If beta secretase (another enzyme) cleaves the amino terminal fragment Abeta40 and Abeta42 are formed.  If alpha secretase (a third enzyme) cleaves the amino terminal fragment — Abeta42 is not formed.   Got all that?

Where do CRISPR and iPSCs come in?  iPSC stands for induced pluripotent stem cells, which can be made from cells in your skin (but not easily).  Subsequently adding the appropriate witches brew can cause them to differentiate into a variety of cells — cortical neurons in this case.

CRISPR was then used to introduce mutations characteristic of familial Alzheimer’s disease into either APP or presenilin1.  Some 16 cell lines each containing a different familial Alzheimer disease mutation were formed.

Then the iPSCs were differentiated into cortical neurons, and the mRNAs (transcriptomics) and proteins made from them (translatomics) were studied.

Certainly a technological tour de force.

What did they find?  Well for the APP and the presenilin1 mutations had effects on Abeta peptide production (but they differered).  Both however increased the accumulation of beta-CTF.  This could be ‘rescued’ by inhibition of beta-secretase — but unfortunately clinical trials have not shown beta-secretase inhibitors to be helpful.

What did increased beta-CTF actually do — there was enlargement of early endosomes in all the cell lines.   How this produces Alzheimer’s disease is anyone’s guess.

Also quite interesting, is the fact that translatomics and transcriptomics of all 16 cell lines showed ‘dysregulation’ of genes which have been associated with Alzheimer’s disease risk — these include APOE, CLU and SORL1.

Certainly a masterpiece of technological virtuosity.

So technology gives us bigger and better results

Or does it?

There was a very interesting paper on the effect of sleep on cerebrospinal fluid and blood flow in the brain [ Science vol. 366 pp. 372 – 373 ’19 ] It contained the following statement –”

During slow wave sleep, the cerebral blood flow is reduced by 25%, which lowers cerebral blood volume  by ~10%.  The reference for this statement was work done in 1991.

I thought this was a bit outre, so I wrote one of the authors.

Dr. X “Isn’t there something more current (and presumably more accurate) than reference #3 on cerebral blood flow in sleep?  If there isn’t, the work should be repeated”

I got the following back “The old studies are very precise, more precise than current studies.”

Go figure.

Does gamma-secretase have sex with its substrates?

This is a family blog (for the most part), so discretion is advised in reading further.   Billions have been spent trying to inhibit gamma-secretase.  Over 150 different mutations have been associated with familial Alzheimer’s disease.  The more we know about the way it works, the better.

A recent very impressive paper from China did just that [ Science vol. 363 pp. 690- 691, 701 eaaw0930 pp. 1 –> 8 ’19 ].

Gamma secretase is actually a combination of 4 proteins (presenilin1, nicastrin, APH1 (anterior pharynx defect) and PEN-2 (presenilin enhancer 2). It is embedded in membranes and has at least 19 transmembrane segments.  It cleaves a variety of proteins spanning membranes (e.g it hydrolyzes a peptide bond — which is just an amide).  The big deal is that cleavage occurs in the hydrophobic interior of the membrane rather than in the cytoplasm where there is plenty of water around.

Gamma secretase cleaves at least 20 different proteins this way, not just the amyloid precursor protein, one of whose cleavage products is the Abeta peptide making up a large component of the senile plaque of Alzheimer’s disease.

To get near gamma secretase, another enzyme must first cleave APP in another place so one extramembrane fragment is short.  Why so the rest of the protein can fit under a loop between two transmembrane helices of nicastrin.  This is elegance itself, so the gamma secretase doesn’t go around chopping up the myriad of extracellular proteins we have.

The 19 or so transmembrane helices of the 4 gamma secretase proteins form a horseshoe, into which migrates the transmembrane segment of the protein to be cleaved (once it can fit under the nicastrin loop).

So why is discretion advised before reading further?  Because the actual mechanism of cleavage involves intimate coupling of the proteins.    One of the transmembrane helices of presenilin1 unfolds to form two beta strands, and the transmembrane helix of the target protein unfolds to form one beta strand, the two strands pair up forming a beta sheet, and then the aspartic acid at the active site of gamma secretase cleaves the target (deflowers it if you will).  Is this sexual or what?

All in all another tribute to ingenuity (and possibly the prurience) of the blind watchmaker. What an elegant mechanism.

Have a look at the pictures in the Science article, but I think it is under a paywall.