Tag Archives: Notch

Why our brains are large: the elegance of its molecular biology

Primates have much larger brains in proportion to their body size than other mammals. Here’s why. The mechanism is incredibly elegant. Unfortunately, you must put a sizable chunk of recent molecular biology under your belt before you can comprehend it. Anyone can listen to Mozart without knowing how to read or write music. Not so here.

I doubt that anyone can start from ground zero and climb all the way up, but here is all the background you need to comprehend what follows. Start here — https://luysii.wordpress.com/2010/07/07/molecular-biology-survival-guide-for-chemists-i-dna-and-protein-coding-gene-structure/
and follow the links (there are 5 more articles).

Also you should be conversant with competitive endogenous RNA (ceRNA) — here’s a link — https://luysii.wordpress.com/2014/01/20/why-drug-discovery-is-so-hard-reason-24-is-the-3-untranslated-region-of-every-protein-a-cerna/

Also you should understand what microRNAs are — we’re still discovering all the things they do — here’s the background you need — https://luysii.wordpress.com/2015/03/22/why-drug-discovery-is-so-hard-reason-26-were-discovering-new-players-all-the-time/weith.

Still game?

Now we must delve into the embryology of the brain, something few chemists or nonbiological type scientists have dealt with.

You’ve probably heard of the term ‘water on the brain’. This refers to enlargement of the ventricular system, a series of cavities in all our brains. In the fetus, all nearly all our neurons are formed from cells called neuronal precursor cells (NPCs) lining the fetal ventricle. Once formed they migrate to their final positions.

Each NPC has two choices — Choice #1 –divide into two NPCs, or Choice #2 — divide into an NPC and a daughter cell which will divide no further, but which will mature, migrate and become an adult neuron. So to get a big brain make NPCs adopt choice #1.

This is essentially a choice between proliferation and maturation. It doesn’t take many doublings of a NPC to eventually make a lot of neurons. Naturally cancer biologists are very interested in the mechanism of this choice.

Well to make a long story short, there is a protein called NOTCH — vitally important in embryology and in cancer biology which, when present, causes NPCs to make choice #1. So to make a big brain keep Notch around.

Well we know that some microRNAs bind to the mRNA for NOTCH which helps speed its degradation, meaning less NOTCH protein. One such microRNA is called miR-143-3p.

We also know that the brain contains a lncRNA called lncND (ND for Neural Development). The incredible elegance is that there is a primate specific insert in lncND which contains 16 (yes 16) binding sites for miR-143-3p. So lncND acts as a sponge for miR-143-3p meaning it can’t bind to the mRNA for NOTCH, meaning that there is more NOTCH around. Is this elegant or what. Let’s hear it for the Blind Watchmaker, assuming you have the faith to believe in such things.

Fortunately lncND is confined to the brain, otherwise we’d all be dead of cancer.

Should you want to read about this, here’s the reference [ Neuron vol. 90 pp. 1141 – 1143, 1255 – 1262 ’16 ] where there’s a lot more.

Historically, this was one of the criticisms of the Star Wars Missile Defense — the Russians wouldn’t send over a few missles, they’d send hundreds which would act as sponges to our defense. Whether or not attempting to put Star Wars in place led to Russia’s demise is debatable, but a society where it was a crime to own a copying machine, could never compete technically to produce such a thing.

Advertisements

Man’s best friend

I usually pay little attention to animal models of neurologic disease. After all, our brain is what separates us from animals (recent human behavior excepted). Neuromuscular disease is different because our peripheral nerves and muscles work the same way as animals. An astounding paper from Harvard and Brazil, gives us an entirely new angle to treat muscular dystrophy, particularly the Duchenne form. I ran a muscular dystrophy clinic for 15 years in the 70s and 80s and haplessly watched young boys deteriorate and die from Duchenne. The major therapeutic advance during that time was — hold your breath — lighter weight braces, allowing the boys to stay out of wheelchairs a bit longer.

Some background for those who don’t know, the molecular defect in Duchenne was found in ’87. Interestingly Kunkel, one of the authors on the original paper [ Cell vol. 51 pp.; 919 – 928 ’87 ] is an author on the present one [ Cell vol. 163 pp. 1204 – 1213 ’15 ]. Duchenne dystrophy affects only males, as the gene for the protein (dystrophin) is found on the X chromosome, so women with a normal X and a mutant X escape. To show how pathetic things were back then, we tried to find out if a sister of a patient was a carrier. How did we do it. By measuring an enzyme released by damaged muscle (CPK) on several occasion. Carriers often showed an elevation.

The mutated protein is called dystrophin. It hooks the contractile apparatus of a muscle cell to the membrane. Failure of this makes muscle cells more fragile when they contract resulting in eventual loss. From a molecular biological point of view the protein is fascinating. The gene is one of largest known, stretching over 2,220,233 positions (nucleotides) on the X chromosome and containing 79 exons. Figuring a transcription rate of 100 nucleotides a second, it takes 6 hours to make the messenger RNA (mRNA) for it. The protein has 3,685 amino acids and figuring a translation rate of 3 – 6 amino acids/second it takes 10 minutes for the ribosome to make it. Given that it takes only 3 nucleotides to code for an amino acid, the protein coding part of the gene takes up only .5% of the gene. Correctly splicing out the introns is a huge task, which we all perform well. This size and complexity of the gene explains why mutations are so common, making it the most common form of hereditary muscular dystrophy (most are).

There are currently all sorts of efforts underway to correct the mutation, particularly in a milder form called Becker dystrophy. Derek has covered them and they constitute a logical direct attack on the pathology.

What is so remarkable about the current Cell paper is that it gives us an entirely new and different way to attack Duchenne (and possible all forms of muscular dystrophy). It involves a colony of dogs in Brazil. They have GRMD (Golden Retriever Muscular Dystrophy) with a mutation in one of the many splice sites in dystrophin (it has 79 exons in man) leading to a premature stop codon and no functional dystrophin in the dogs’ muscles. The animals weaken and become non ambulatory with a shortened lifespan. However, a few of the dogs in the colony seemed pretty normal. So they went to work. The obvious reason was that gene was in some way repaired so the animals had normal amounts of dystrophin. Not so, even though ambulatory, the animals’ muscles had no dystrophin. So the whole genome was sequenced. What they found was that a mutation at an upstream site of a protein called Jagged1 lead to increased transcription of the gene and increased levels of the protein.

Jagged1 is a protein ligand for the Notch system of receptors. The Notch system is important in muscle regeneration. The myoblasts of the animals had more proliferative capacity. The Notch system is far too complicated to go into here — https://en.wikipedia.org/wiki/Notch_signaling_pathway, but expect to see a lot more research money pumped into it.

What I find so fabulous about this paper, is that it gives us an entirely new way of thinking about Duchenne, totally unrelated to the genetic defect, which had been our focus up to now. It also rubs our noses in how little we understand about our molecular biology and cell physiology. If we really understood things, we’d have been focused on Notch years ago. Yet another reason drug discovery is so hard. We are trying to alter a system we only dimly understand.