Tag Archives: noncoding RNA

Forgotten but not gone — take III

It’s pretty clear that life originated in the RNA world.  Consumed by thinking of proteins, enzymes, DNA etc. we tend to forget that there is a lot of RNA out there doing things we didn’t suspect.  Here are two more examples, one of which may explain why even genes coding  for proteins are relatively free of codons transcribed into amino acids.  The champ of course is dystrophin, discussed in the last post — https://luysii.wordpress.com/2019/05/05/duchenne-muscular-dystrophy-a-novel-genetic-treatment/.  The gene is a monster with  2,220,233 nucleotides coding for just 3,685 amino acids, meaning that less than 1/200th of the gene is actually coding for protein. The work below should make us think about just what else the 199/200th of dystrophin might be doing,

Unsuspected use of RNA #1.   [ Neuron vol. 102 pp. 507 – 509, 553 – 563 ’19 ]  The Tumor protein p53 inducible nuclear protein 2 (Tp53inp2) gene codes for a low complexity protein of 222 amino acids, all in one exon.  However the ‘3 untranslated region (3’UTR)  of the RNA for it is nearly 5 times longer (3,121 nucleotides) vs. 666 amino acid coding nucleotides.  The protein is made from the mRNA in some cells, but not in sympathetic neurons, even though the mRNA for Tp53inp2 is the most abundant RNA in the axons of these neurons.

Why do animals lick their wounds?  Because their saliva contains nerve growth factor (NGF) among other things.  NGF is crucial for the growth of sympathetic neuron axons, and their very survival in embryonic life.  It is a protein, which binds to a receptor for it (TrkA) on the axon membrane.  The receptor/NGF complex is then internalized and transported back to the nucleus turning on the genes necessary for axon growth and cell survival.

Even though the mRNA for Tp53inp2 is NOT translated into protein in the axon, it is crucial for the internalization of TrkA/NGF.

People have studied proteins whose function it is to bind RNA for years.  They are called RBPs (RNA Binding Proteins), and our genome has 750 of them.  200 RBPs are associated with genetic disease.  This work turns everthing on its head.  Here is an RNA whose function it is to bind a protein (e.g. TrkA).

How many more mRNAs have nonCoding (for protein) parts with other functions?

Unsuspected use of RNA #2. Circular RNAs had been missed for years (although known since 1976).  The classic sequencing methods isolate only RNAs with characteristic tails (such as polyAdenine).  Circular RNAs don’t have any.    They are formed by back splicing of 3′ end of exon N to the 5′ end of exon N.  Fortunately this is only 1% as efficient as the normal way.

So what?  Circular RNAs are crucial in the innate immune response to microbial invaders.  Double stranded DNA belongs inside the nucleus.  When it gets into the cytoplasm when some organism brings it there,it binds to Protein Kinase R (PKR) activating it so it phosphorylates eukaryotic initiation factor 2 (eiF2) bringing protein synthesis to a screeching halt.

This means that the cell needs a mechanism to keep PKR quiet.  This is where circular RNAs come in   [ Cell vol. 177 pp. 797 – 799, 865 – 880 ’19 ].  If the nucleotides in the circle can reach across the circle and base pair with each other forming a duplex of any length, it will bind to PKR inhibiting it.  Most circular RNAs are expressed at only a handful of copies/cell, the cell containing just 10,000 of them.

The work found that overexpression of a single circular RNA able to form duplexes (dsRNA) inhibits PKR.  Over expression of linear RNA of the same sequence does not, nor does overexpression of circular RNA which can’t form dsRNA.

So when an invader with dsDNA or dsRNA gets into the cell, RNAase L, a cytoplasmic endonuclease is activated, cleaving circular RNA, and uninhibiting PKR.

So it’s back to the drawing board for mRNA and those parts (introns, 3’UTRs) we didn’t think were doing anything.  Perhaps that’s why there are so many of them, and why they take up more room in mRNA and genes than the ones coding for amino acids.  Also it’s time to look at RNAs as protein binders and modifiers, rather than the other way around as we have been doing.

Here’s a link to an earlier member of the series — https://luysii.wordpress.com/2019/04/15/forgotten-but-not-gone-take-ii/xa


Who knew Marshall McLuhan was a molecular biologist

Marshall McLuhan famously said “the medium is the message”. Who knew he was talking about molecular biology?  But he was, if you think of the process of transcription of DNA into various forms of RNA as the medium and the products of transcription as the message.  That’s exactly what this paper [ Cell vol. 171 pp. 103 – 119 ’17 ] says.

T cells are a type of immune cell formed in the thymus.  One of the important transcription factors which turns on expression of the genes which make a T cell a Tell is called Bcl11b.  Early in T cell development it is sequestered away near the nuclear membrane in highly compacted DNA. Remember that you must compress your 1 meter of DNA down by 100,000fold to have it fit in the nucleus which is 1/100,000th of a meter (10 microns).

What turns it on?  Transcription of nonCoding (for protein) RNA calledThymoD.  From my reading of the paper, ThymoD doesn’t do anything, but just the act of opening up compacted DNA near the nuclear membrane produced by transcribing ThymoD is enough to cause this part of the genome to move into the center of the nucleus where the gene for Bcl11b can be transcribed into RNA.

There’s a lot more to the paper,  but that’s the message if you will.  It’s the act of transcription rather than what is being transcribed which is important.

The paper doesn’t talk about the structure of ThymoD — how long it is, whether it binds to anything in the nucleus — etc. etc.  Perhaps I’ve missed it.  I’ve written the lead author. Hopefully I won’t be too embarrassed by what he responds.

Here’s more about McLuhan — https://en.wikipedia.org/wiki/Marshall_McLuhan

If some of the terms used here are unfamiliar — look at the following post and follow the links as far as you need to.  https://luysii.wordpress.com/2010/07/07/molecular-biology-survival-guide-for-chemists-i-dna-and-protein-coding-gene-structure/