Tag Archives: Nonclassical cations

Paul Schleyer 1930 – 2014, A remembrance

Thanks Peter for your stories and thoughts about Dr. Schleyer (I never had the temerity to even think of him as Paul). Hopefully budding chemists will read it, so they realize that even department chairs and full profs were once cowed undergraduates.

He was a marvelous undergraduate advisor, only 7 years out from his own Princeton degree when we first came in contact with him and a formidable physical and intellectual presence even then. His favorite opera recording, which he somehow found a way to get into the lab, was don Giovanni’s scream as he realized he was to descend into Hell. I never had the courage to ask him if the scars on his face were from dueling.

We’d work late in the lab, then go out for pizza. In later years, I ran into a few Merck chemists who found him a marvelous consultant. However, back in the 50’s, we’d be working late, and he’d make some crack about industrial chemists being at home while we were working, the high point of their day being mowing their lawn.

I particularly enjoyed reading his papers when they came out in Science. To my mind he finally settled things about the nonclassical nature of the norbornyl cation — here it is, with the crusher being the very long C – C bond lengths

Science vol. 341 pp. 62 – 64 ’13 contains a truly definitive answer (hopefully) along with a lot of historical background should you be interested. An Xray crystallographic structure of a norbornyl cation (complexed with a Al2Br7- anion) at 40 Kelvin shows symmetrical disposition of the 3 carbons of the nonclassical cation. It was tricky, because the cation is so symmetric that it rotates within crystals at higher temperatures. The bond lengths between the 3 carbons are 1.78 to 1.83 Angstroms — far longer than the classic length of 1.54 Angstroms of a C – C single bond.

I earlier wrote a post on why I don’t read novels, the coincidences being so extreme that if you put them in a novel, no one would believe them and throw away the book — it involves the Princeton chemistry department and my later field of neurology — here’s the link https://luysii.wordpress.com/2014/11/13/its-why-i-dont-read-novels/

Here’s yet another. Who would have thought, that years later I’d be using a molecule Paul had synthesized to treat Parkinson’s disease as a neurologist. He did an incredibly elegant synthesis of adamantane using only the product of a Diels Alder reaction, hydrogenating it with a palladium catalyst and adding AlCl3. An amazing synthesis and an amazing coincidence.

As Peter noted, he was an extremely productive chemist and theoretician. He should have been elected to the National Academy of Sciences, but never was. It has been speculated that his wars with H. C. Brown made him some powerful enemies. I’ve heard through the grapevine that it rankled him greatly. But virtue is its own reward, and he had plenty of that.

R. I. P. Dr. Schleyer

Advertisements