Tag Archives: lysosome

To understand anything in the cell you need to understand nearly everything in the cell

Understanding how variants in one protein can either increase or decrease the risk of Parkinson’s disease requires understanding of the following: the lysosome, TMEM175, Protein kinase B, protein moonlighting, ion channel lysoK_GF, dopamine neurons among other things. So get ready for a deep dive into molecular and cellular biology.

It is now 50 years and 6 months since L-DOPA was released in the USA for Parkinson’s disease, and I was tasked as a resident by the chief with running the first L-DOPA clinic at the University of Colorado.  We are still learning about the disease as the following paper Nature vol. 591 pp. 431 – 437 ’21 will show. 

The paper describes an potassium conducting ion channel in the lysosomal membrane called LysoK_GF.  The channel is made from two proteins TMEM175 and protein kinase B (also known as AKT).

TMEM175 is an ion channel conducting potassium.  It is unlike any of the 80 or so known potassium channels.  It  contains two repeats of 6 transmembrane helices (rather than 4) and no pore loop containing the GYG potassium channel signature sequence. Lysosomes lacking it aren’t as acidic as they should be (enzymes inside the lysosome work best at acid pH).  Why loss of a potassium channel show affect lysosomal pH is a mystery (to me at least).

Genome Wide Association Studies (GWAS) have pointed to the genomic region containing TMEM175 as having risk factors for Parkinsonism.  Some variants in TMEM175 are associated with increased risk of the disease and others are associated with decreased risk — something fascinating as knowledge here should certainly tell us something about Parkinsonism.  

The other protein making up LysoK_GF is protein kinase B (also known as AKT). It is found inside the cell, sometimes associated with membranes, sometimes free in the cytoplasm. It is big containing 481 amino acids. Control of its activity is important, and Cell vol. 169 pp. 381 – 405 ’17 lists 21 separate amino acids which can be modified by such things as acetylation, phosphorylation, sumoylation, Nacetyl glucosamine, proline hydroxylation.  Well 2^21 is 2,097,152, so this should keep cell biologists busy for some time. Not only that some 100 different proteins AKT phosphorylates were known as 2017.  

TMEM175 is opened by conformational changes in AKT.  Normally the enzyme is inactive because the pleckstrin homology domain binds to the catalytic domain inhibiting enzyme activity as the substrate can’t get in.

Remarkably you can make a catalytically dead AKT, and it still works as a controller of TMEM175 activity — this is an example of a moonlighting molecule — for more please see — https://luysii.wordpress.com/2021/01/11/moonlighting-molecules/.

Normally the activity and conformation of AKT is controlled by the metabolic state of the cell (with 21 different molecular knob sites on the protein this shouldn’t be hard).  So the fact that AKT conformation controls TMEM175 conductivity which controls lysosome activity gives the metabolic state of the cell a way to control lysosomal function.  

Notice how to understand anything in the cell you must ask ‘what’s it for’, thinking that is inherently teleological. 

Now on to the two risk factors for Parkinsonism in TMEM175.  The methionine –> threonine mutation at amino acid #393 reduces the lysoK_GF current and is associated with an increased risk of parkinsonism, while the glutamine –> proline mutation at amino acid position #65 gives a channel which remains functional under conditions of nutrient starvation. 

The authors cultured dopamine neurons and found out that the full blooded channel LysoK_GF (TMEM175 + AKT) protected neurons against a variety of insults (MPTP — a known dopamine neuron toxin, hydrogen peroxide, nutrient starvation). 

TMEM175 knockout neurons accumulate more alpha-synuclein — the main constituent of the Lewy body of Parkinsonism.

So it’s all one glorious tangle, but it isn’t just molecular biological navel gazing, because it is getting close to one cause (and hopefully a treatment) of Parkinson’s disease.  

Memories are made of this ?

Back in the day when information was fed into computers on punch cards, the data was the holes in the paper not the paper itself. A far out (but similar) theory of how memories are stored in the brain just got a lot more support [ Neuron vol. 93 pp. 6 -8, 132 – 146 ’17 ].

The theory says that memories are stored in the proteins and sugar polymers surrounding neurons rather than the neurons themselves. These go by the name of extracellular matrix, and memories are the holes drilled in it which allow synapses to form.

Here’s some stuff I wrote about the idea when I first ran across it two years ago.

——

An article in Science (vol. 343 pp. 670 – 675 ’14) on some fairly obscure neurophysiology at the end throws out (almost as an afterthought) an interesting idea of just how chemically and where memories are stored in the brain. I find the idea plausible and extremely surprising.

You won’t find the background material to understand everything that follows in this blog. Hopefully you already know some of it. The subject is simply too vast, but plug away. Here a few, seriously flawed in my opinion, theories of how and where memory is stored in the brain of the past half century.

#1 Reverberating circuits. The early computers had memories made of something called delay lines (http://en.wikipedia.org/wiki/Delay_line_memory) where the same impulse would constantly ricochet around a circuit. The idea was used to explain memory as neuron #1 exciting neuron #2 which excited neuron . … which excited neuron #n which excited #1 again. Plausible in that the nerve impulse is basically electrical. Very implausible, because you can practically shut the whole brain down using general anesthesia without erasing memory. However, RAM memory in the computers of the 70s used the localized buildup of charge to store bits and bytes. Since charge would leak away from where it was stored, it had to be refreshed constantly –e.g. at least 12 times a second, or it would be lost. Yet another reason data should always be frequently backed up.

#2 CaMKII — more plausible. There’s lots of it in brain (2% of all proteins in an area of the brain called the hippocampus — an area known to be important in memory). It’s an enzyme which can add phosphate groups to other proteins. To first start doing so calcium levels inside the neuron must rise. The enzyme is complicated, being comprised of 12 identical subunits. Interestingly, CaMKII can add phosphates to itself (phosphorylate itself) — 2 or 3 for each of the 12 subunits. Once a few phosphates have been added, the enzyme no longer needs calcium to phosphorylate itself, so it becomes essentially a molecular switch existing in two states. One problem is that there are other enzymes which remove the phosphate, and reset the switch (actually there must be). Also proteins are inevitably broken down and new ones made, so it’s hard to see the switch persisting for a lifetime (or even a day).

#3 Synaptic membrane proteins. This is where electrical nerve impulses begin. Synapses contain lots of different proteins in their membranes. They can be chemically modified to make the neuron more or less likely to fire to a given stimulus. Recent work has shown that their number and composition can be changed by experience. The problem is that after a while the synaptic membrane has begun to resemble Grand Central Station — lots of proteins coming and going, but always a number present. It’s hard (for me) to see how memory can be maintained for long periods with such flux continually occurring.

This brings us to the Science paper. We know that about 80% of the neurons in the brain are excitatory — in that when excitatory neuron #1 talks to neuron #2, neuron #2 is more likely to fire an impulse. 20% of the rest are inhibitory. Obviously both are important. While there are lots of other neurotransmitters and neuromodulators in the brains (with probably even more we don’t know about — who would have put carbon monoxide on the list 20 years ago), the major inhibitory neurotransmitter of our brains is something called GABA. At least in adult brains this is true, but in the developing brain it’s excitatory.

So the authors of the paper worked on why this should be. GABA opens channels in the brain to the chloride ion. When it flows into a neuron, the neuron is less likely to fire (in the adult). This work shows that this effect depends on the negative ions (proteins mostly) inside the cell and outside the cell (the extracellular matrix). It’s the balance of the two sets of ions on either side of the largely impermeable neuronal membrane that determines whether GABA is excitatory or inhibitory (chloride flows in either event), and just how excitatory or inhibitory it is. The response is graded.

For the chemists: the negative ions outside the neurons are sulfated proteoglycans. These are much more stable than the proteins inside the neuron or on its membranes. Even better, it has been shown that the concentration of chloride varies locally throughout the neuron. The big negative ions (e.g. proteins) inside the neuron move about but slowly, and their concentration varies from point to point.

Here’s what the authors say (in passing) “the variance in extracellular sulfated proteoglycans composes a potential locus of analog information storage” — translation — that’s where memories might be hiding. Fascinating stuff. A lot of work needs to be done on how fast the extracellular matrix in the brain turns over, and what are the local variations in the concentration of its components, and whether sulfate is added or removed from them and if so by what and how quickly.

—-

So how does the new work support this idea? It involves a structure that I’ve never talked about — the lysosome (for more info see https://en.wikipedia.org/wiki/Lysosome). It’s basically a bag of at least 40 digestive and synthetic enzymes inside the cell, which chops anything brought to it (e.g. bacteria). Mutations in the enzymes cause all sorts of (fortunately rare) neurologic diseases — mucopolysaccharidoses, lipid storage diseases (Gaucher’s, Farber’s) the list goes on and on.

So I’ve always thought of the structure as a Pandora’s box best kept closed. I always thought of them as confined to the cell body, but they’re also found in dendrites according to this paper. Even more interesting, a rather unphysiologic treatment of neurons in culture (depolarization by high potassium) causes the lysosomes to migrate to the neuronal membrane and release its contents outside. One enzyme released is cathepsin B, a proteolytic enzyme which chops up the TIMP1 outside the cell. So what. TIMP1 is an endogenous inhibitor of Matrix MetalloProteinases (MMPs) which break down the extracellular matrix. So what?

Are neurons ever depolarized by natural events? Just by synaptic transmission, action potentials and spontaneously. So here we have a way that neuronal activity can cause holes in the extracellular matrix,the holes in the punch cards if you will.

Speculation? Of course. But that’s the fun of reading this stuff. As Mark Twain said ” There is something fascinating about science. One gets such wholesale returns of conjecture out of such a trifling investment of fact.”