Tag Archives: Isopeptide bond

Ubiquitination isn’t just for proteins

Time to look up from the plow biochemists.  Everyone knows that ubiquitin is added to proteins to destroy them.  The carboxy terminal amino acid of ubiquitin (glycine) forms an amide with the epsilon amino acid of a lysine called an isopeptide bond, and off  the protein goes to the proteasome for destruction.  This is simplistic and ubiquitination has many other other roles in the cell, but there isn’t time for it here.

I couldn’t resist putting in two interesting facts about ubiquitin.

#1. Like sharks,  evolution hasn’t changed ubiquitin much — only 3/71 amino acids differ between yeast and us.

#2 Ubiquitin is so stable that boiling water doesn’t denature it < Science vol. 365 pp. 502 – 505 ’19 >.

We have over 600 E3 enzymes (ubiquitin ligases), 40 E2 enzymes, and 8 E1 enzymes, and all 3 types are required to add ubiquitin to proteins.

Once a bacterium gets inside a cell, one of the ways the innate immune system attacks it is by ubiquitinating its proteins.  Nothing out of the ordinary there.

Salmonella (the organism responsible for most cases of food poisoning) is one such.  Our cells ubiquitinate the hell out of it.  However Nature vol. 594 pp. 28 – 29, 111 – 116 ’21 shows that, not just Salmonella proteins are the only sites of ubiquitination.  We also ubiquitinate endotoxin (lipopolysaccharide) which is a combination of sugars and lipids, with nary an amino acid in sight.  Endotoxin is a component of the outer membrane of every Gram negative bacterium, so the effect is likely not confined to Salmonella.

Even more spectacular is the enzyme adding ubiquitin.  It is called RNF213 (aka Mysterin), which looks like nothing the classic E3 enzymes we know and love.  For one thing in addition to E3 activity, it has a motor domain, a zinc binding domain and other domains of unknown function.  It’s a real monster with 5,184 amino acids and a molecular mass of 584 kiloDaltons.

There is a lot of interesting molecular biology to RNF213 — mutations cause Moya moya disease.

But the papers are particularly interesting because they show a lot of work of a new type needs to be done.

What else does Mysterin ubiquitinate?  Are there other enzymes in the cell adding ubiquitin, and if so, what do they ubiquitinate?

Definitely time to expand the well plowed field of ubiquitin.

Apologies to Hamlet

Apologies to Shakespeare and Hamlet.  Serotonin does “more things in heaven and Earth, Horatio, than are dreamt of in your philosophy.”  How about chemically modifying histones?We all know about serotonin and depression (or at least we think we know).  Block serotonin reuptake by the releasing neuron and bingo you’ve  cured depression (sometimes).  Do not ask the lecturer which of the 15 known serotonin receptors in the brain the increased serotonin actually binds to and what effects the increased levels produce after binding (and which are important for the alleviation of depression).The two body organs producing the most serotonin are the brain and the gut.  Chemical modification of proteins by serotonin has been known for 10 years.  The enzyme responsible is transglutaminase2, it takes the NH2 group of serotonin and replaces the NH2 of glutamine with it — forming an isopeptide bond.

Interestingly, the serotonylation of histones is quite specific.  Only glutamine #5 on histone H3 is modified this way.  For the reaction to occur lysine #4 on histone H3 must be trimethylated (H3K4Me3) — now you can begin to see the combinatorial possibilities of the various histone modifications known.  Over 130 post-ranslational modifications of histones were known by 2013 [ Cell vol. 155 p. 42 ’13 ].

The H3K4Me3Q5Ser is enriched in euchromatin and correlates with permissive gene expression.  Changing glutamine #5 to something else so it can’t be serotonylated changes the transcription pattern, and deficits in cellular differentiation.  You can read more about it in Nature vol. 567 pp. 464 – 465, 535 – 539 ’19 ]

Everything not expressly forbidden biochemically is happening somewhere

A fairly oblique introduction (from an earlier post)

Sherlock Holmes and the Green Fluorescent Protein

Gregory (Scotland Yard): “Is there any other point to which you would wish to draw my attention?”
Holmes: “To the curious incident of the dog in the night-time.”
Gregory: “The dog did nothing in the night-time.”
Holmes: “That was the curious incident.”

The chromophore of green fluorescent protein (GFP) is para-hydroxybenzylidene imidazolinone. It is formed by cyclization of a serine (#65) tyrosine (#66) glycine (#67) sequential tripeptide. It is found in the center of a beta barrel formed by the 238 amino acids of GFP.

What is so curious about this?

Simply put, why don’t things like this happen all the time? Perhaps nothing quite this fancy, but on a more plebeian level consider this: of the twenty amino acids, 2 are carboxylic acids, 2 are amides, 1 is an amine, 3 are alcohols and one is a thiol. One might expect esters, amides, thioesters and sulfides to be formed deep inside proteins. Why deep inside? On the surface of the protein, there is water at 55 molar around to hydrolyze them purely by the law of mass action (releasing about 10 kJ/Avogadro’s number per bond in the process). Some water is present in the X-ray crystallographic structure of proteins, but nothing this concentrated.

The presence of 55 M water bathing the protein surface leads to an even more curious incident, namely why proteins exist at all given that amide hydrolysis is exothermic (as well as entropically favorable). Perhaps this is why proteins contain so many alpha helices and beta sheets — as well as functioning as structural elements they may also serve to hide the amides from water by hydrogen bonding them to each other. Along this line, could this be why the hydrophilic side chains of proteins (arginine, lysine, the acids and the amides) are rather bulky? Perhaps they also function to sterically shield the adjacent amides. After all, why should lysine have 4 CH2 groups to separate the primary amino from the alpha carbon? Ditto for the 3 CH2 groups separating the guanidine group, and the 2 CH2 for glutamic acid.

We now have an example before us of an ester between threonine and glutamic acid within the same protein. For details see Proc. Natl. Acad. Sci. vol. 111 pp. 1229 – 1230, 1367 – 1372 ’14. It is put to use to stabilize long thin proteins subject to mechanical stress. All sorts have bacteria have little hairs (pili) allowing them to attach to our cells. The first example were found in some nasty characters (Streptococcus progenies, Clostridium perfringens), possibly because they’re under intense study because the infections they cause are even nastier. Interestingly, the ester is buried deep in the protein where water can’t get at it so easily. This type of link on external proteins turns out to be fairly common in Gram positive organisms.

So everything not biochemically forbidden is probably happening somewhere.