Time for some of the excellent molecular biology I’ve put off writing about while I plow through the new Clayden. I reached the halfway point today (p. 590) Exactly 2 months and 2 weeks after it arrived. The chemist might need some brushing up on DNA and messenger RNA before pushing on. Pretty much all the background needed is found in https://luysii.wordpress.com/2010/07/07/molecular-biology-survival-guide-for-chemists-i-dna-and-protein-coding-gene-structure/ an d https://luysii.wordpress.com/2010/07/11/molecular-biology-survival-guide-for-chemists-ii-what-dna-is-transcribed-into/.
Everyone has heard of the AIDs virus. It has so far been impossible to cure because it hides in our DNA doing next to nothing. Tickle it in a variety of unknown ways, and it’s DNA is transcribed into messenger RNA (mRNA), the virus is assembled and goes on to wreak havoc with our immune system. How does the AIDs virus get into our DNA in the first place? Its genome is made of RNA, not DNA. It has an enzyme (reverse transcriptase) which transcribes its RNA into DNA, and another enzyme (the integrate, which is actually a complex of proteins) which patches the DNA copy (called cDNA) into our genome. That’s why we can’t get rid of it. That’s also why it’s called a retrovirus — because of retrograde transcription of its RNA into cDNA).
Well, sorry to say, but at least 10% of our DNA is made of retrovirus remnants. The vast majority of them have been crippled by mutation so their reverse transcriptases don’t work any more, or there is something wrong with their integrase, etc. etc. Some of them do make RNA copies of themselves however, but the copies are mutated enough that infectious virus doesn’t form. But the RNA copies can be reverse transcribed into cDNA and reinserted back into our DNA, and in a new site to boot. This is why they are called retrotransposons.
The whole bunch of retroviruses, retrotransposons, and other repetitive elements of DNA have been called ‘junk’ by eminent authority. Another epithet for them is the selfish gene — which exists only to reproduce itself. Humans are said to be machines for reproducing human DNA.
Enter [ Cell vol. 150 pp. 7 – 9, 29 – 38 ’12 ]. Now it’s time for some very human biology The fetus represents an immunologically different graft to the mother. Half its antigens are tolerated because they are maternal, the paternal half are not likely to be. Allogeneic means a transplant from a different member of the same species, so the fetus is regarded as semiallogeneic.
So why doesn’t our immune system attack the placenta surrounding the fetus, which expresses the paternal proteins? There’s probably a lot more to it but a class of immune cell called a regulatory T cell (Treg) shuts down the immune response wherever they are found, and the placenta has lots of them.
Different cells express different proteins, and Tregs are no exception. A transcription factor is something that binds to the DNA in front of a gene, turning on transcription of the gene, ultimately increasing production of the protein the gene codes for. Specificity is obtained by the transcription factor binding to particular sequences of DNA, which are found in only in front of a subset of genes
- So nat’ralists observe, a flea
- Hath smaller fleas that on him prey,
- And these have smaller fleas that bite ’em,
- And so proceed ad infinitum.”
…
An important protein like Foxp3 is highly controlled. There are 3 distinct regions in front of the gene were other transcription factors and repressors of transcription bind. They are called conserved nonCoding sequences (CNSs), an oxymoron, because they are clearly coding for something quite important. The 3 sequences are called CNS1, CNS2 and CNS3. Technology has progressed to the point where we can remove just about any DNA sequence from the mouse genome we wish (the resultant mice are called knockout mice).
Anyway if you knockout CNS1 the mice resorb semiallogenic fetuses (where the father and the mother aren’t genetically related), but not allogenic fetuses (where the genomes of the father and the mother are pretty much the same due to inbreeding). It’s possible to trace Foxp3 far back in evolution. Only animals with placentas (eutherians) have CNS1 in addition to CNS2 and CNS3. Marsupials, which don’t have placentas, just have CNS2 and CNS3.