Tag Archives: FUS

Neuroscience can no longer ignore phase separation

As a budding organic chemist, I always found physical chemistry rather dull, particularly phase diagrams. Organic reactions give you a very clear and intuitive picture of energy and entropy without the math.

In past few years cell biology has been finding phase changes everywhere. Now it comes to neuroscience as the synaptic active zone (where vesicles are released) is an example of a phase change (macromolecular condensation, liquid liquid phase separation, biomolecular condensates — it goes by a lot of names as the field is new). If you are new to the field, have a look at an excerpt from an earlier post before proceeding further — it is to be found after the ****

Although the work [ Nature vol. 588 pp. 454 – 458 ’20 ] was done in C. elegans with proteins SYD2 (aka liprinAlpha) and ELKS1, humans have similar proteins.

Phase separation accounts for a variety of cellular organelles not surrounded by membranes. The best known example is the nucleolus, but others include Cajal bodies, ProMyelocytic Leukemia Bodies (PML bodies), gemline P granules, processing bodies, stress granules.

These nonmembranous organelles have 3 properties in common

l. They arise as a phase separation from the surrounding milieu

2. They remain in a liquid state, but with properties distinct from those in the surrounding cellular material

3. They are dynamic. Proteins move in and out of them in seconds (rather than minutes, hours or longer as is typical for stable complexes.

They are usually made of proteins and RNA, and proteins in them usually have low complexity sequences (one example contains 60 amino acids of which 45 are one of alanine, serine, proline and arginine)

Back to the synaptic active zone. The ELKS1 and SYD2 both have phase separation regions (which aren’t of low complexity but they both have lots of amino acids capable of making pi pi contacts). They undergo phase separation during an early stage of synapse development. Later they solidify and bind other proteins found in the active presynaptic zone. You can make mutant ELKS1 and SYD2 lacking the low complexity regions, but the synapses they form are abnormal.

The liquid phase scaffold formed by SYD2 and ELK1 can be reconstituted in vitro. It binds and incorporates downstream synaptic components. Both proteins are large (SYD2 has 1,139 amino acids, ELKS1 has 836).

What is remarkable is that you can take a phase separation motif from human proteins (FUS which when mutated can cause ALS, or from hnRNPA2) put them into SYD2 and ELK1 mutants lacking their low complexity region and have the proteins form a normal presynaptic active zone.

This is remarkable and exciting stuff


Advances in cellular biology have largely come from chemistry.  Think DNA and protein structure, enzyme analysis.  However, cell biology is now beginning to return the favor and instruct chemistry by giving it new objects to study. Think phase transitions in the cell, liquid liquid phase separation, liquid droplets, and many other names (the field is in flux) as chemists begin to explore them.  Unlike most chemical objects, they are big, or they wouldn’t have been visible microscopically, so they contain many, many more molecules than chemists are used to dealing with.

These objects do not have any sort of definite stiochiometry and are made of RNA and the proteins which bind them (and sometimes DNA).  They go by any number of names (processing bodies, stress granules, nuclear speckles, Cajal bodies, Promyelocytic leukemia bodies, germline P granules.  Recent work has shown that DNA may be compacted similarly using the linker histone [ PNAS vol.  115 pp.11964 – 11969 ’18 ]

The objects are defined essentially by looking at them.  By golly they look like liquid drops, and they fuse and separate just like drops of water.  Once this is done they are analyzed chemically to see what’s in them.  I don’t think theory can predict them now, and they were never predicted a priori as far as I know.

No chemist in their right mind would have made them to study.  For one thing they contain tens to hundreds of different molecules.  Imagine trying to get a grant to see what would happen if you threw that many different RNAs and proteins together in varying concentrations.  Physicists have worked for years on phase transitions (but usually with a single molecule — think water).  So have chemists — think crystallization.

Proteins move in and out of these bodies in seconds.  Proteins found in them do have low complexity of amino acids (mostly made of only a few of the 20), and unlike enzymes, their sequences are intrinsically disordered, so forget the key and lock and induced fit concepts for enzymes.

Are they a new form of matter?  Is there any limit to how big they can be?  Are the pathologic precipitates of neurologic disease (neurofibrillary tangles, senile plaques, Lewy bodies) similar.  There certainly are plenty of distinct proteins in the senile plaque, but they don’t look like liquid droplets.

It’s a fascinating field to study.  Although made of organic molecules, there seems to be little for the organic chemist to say, since the interactions aren’t covalent.  Time for physical chemists and polymer chemists to step up to the plate.

We don’t understand amyloid very well

I must admit I was feeling pretty snarky about our understanding of amyloid and Alzheimer’s after the structure of Abeta42 was published.  In particular the structure explained why the alanine 42–> threonine 42 mutation was protective against Alzheimer’s disease while the alanine 42 –> valine 42 mutation increases the risk.  That’s all explained in the last post — https://luysii.wordpress.com/2017/10/12/abeta42-at-last/ — but a copy will appear at the end.

In that post I breathlessly hoped for the structure of aBeta40 which is known to be less toxic to neurons.  Well it’s here and it shows how little we understand about what does and what doesn’t form amyloid.  The structure appears in a paper about the amyloid formed by another protein (FUS) to be described later — Cell 171, 615–627, October 19, 2017 — figure 7 p. 624.

Now all Abeta40 lacks are the last 2 amino acids of Abeta42 — isoleucine at 41 and alanine at 42.  So solve the Schrodinger equation for it, and stack it up so it forms amyloid, or use your favorite molecular dynamics or other modeling tool.  Take a guess what it looks like.

Abeta42 is a dimer, a beta40 is a trimer, even though the first 40 amino acids of both are identical.

It gets worse. FUS (FUsed in Sarcoma) is a 526 amino acid protein which binds to RNA and is mostly found in the nucleus.  Neurologists are interested in it because over 50 mutations in have been found in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD).   FUS contains a low complexity domain (LCD) of 214 amino acids, 80% of which are one of 4 amino acids (glycine, serine, glutamine and tyrosine).  At high protein concentrations this domain of FUS forms long unbundled fibrils with the characteristic crossBeta structure of amyloid.  Only 57/214 of the LCD amino acids are part of the structured core of the amyloid — the rest are disordered.

Even worse the amino acids forming the amyloid core (#39 -#95) are NOT predicted by a variety of computational methods predicting amyloid formation (Agrescan, FISH, FOLDamyloid, Metamyl, PASTA 2.0).  The percentages of gly, ser, gln and tyr in the core forming region are pretty much the same as in the whole protein.  The core forming region has no repeats longer than 4 amino acids.

The same figure 7 has the structure of the amyloid formed by alpha-synuclein, which accumulates in the Lewy bodies of Parkinson’s disease.  It just has one peptide per layer of amyloid.

When you really understand something you can predict things, not just describe them as they are revealed.


Abeta42 at last

It’s easy to see why cryoEM got the latest chemistry Nobel.  It is telling us so much.  Particularly fascinating to me as a retired neurologist is the structure of the Abeta42 fibril reported in last Friday’s Science (vol. 358 pp. 116 – 119 ’17).

Caveats first.  The materials were prepared using an aqueous solution at low pH containing an organic cosolvent — so how physiologic could the structure actually be?  It probably is physiologic as the neurotoxicity of the fibrils to neurons in culture was the same as fibrils grown at neutral pH.  This still isn’t the same as fibrils grown in the messy concentrated chemical soup known as the cytoplasm.  Tending to confirm their findings is the fact that NMR and Xray diffraction on the crystals produced the same result.

The fibrils were unbranched and microns long (implying at least 2,000 layers of the beta sheets to be described).  The beta sheets stack in parallel and in register giving the classic crossBeta sheet structure.  They were made of two protofilaments winding around each other.  Each protofilament contains all 42 amino acids of Abeta42 and all of them form a completely flat beta sheet structure.

Feast your eyes on figure 2 p. 117.  In addition to showing the two beta sheets of the two protofilaments, it shows how they bind to each other.  Aspartic acid #1 of one sheet binds to lysine #28 of the other.  Otherwise the interface is quite hydrophobic.  Alanine2 of one sheet binds to alanine42 of the other, valine39 of one sheet binds to valine 39 of the other.  Most importantly isoLeucine 41 of one sheet binds to glycine38 of the other.

This is important since the difference between the less toxic Abeta40 and the toxic Abeta 42 are two hydrophobic amino acids Isoleucine 41 and Alanine 42.  This makes for a tighter, longer, more hydrophobic interface between the protofilaments stabilizing them.

That’s just a guess.  I can’t wait for work on Abeta40 to be reported at this resolution.

A few other points.  The beta sheet of each protomer is quite planar, but the planes of the two protomers are tilted by 10 degrees accounting for the helicity of the fibril. The fibril is a rhombus whose longest edge is about 70 Angstroms.

Even better the structure explains a mutation which is protective against Alzheimer’s.  This remains the strongest evidence (to me at least) that Abeta peptides are significantly involved in Alzheimer’s disease, therapeutic failures based on this idea notwithstanding.  The mutation is a change of alanine2 to threonine which can’t possibly snuggle up hydrophobically to isoleucine nearly as well as alanine did. This should significantly weaken the link between the two protofilaments and make fibril formation more difficult.

The Abeta structure of the paper also explains another mutation. This one increases the risk of Alzheimer’s disease (like many others which have been discovered).  It involves the same amino acid (alanine2) but this time it is changed to the morehydrophobic valine, probably resulting in a stronger hydrophobic interaction with isoLeucine41 (assuming that valine’s greater bulk doesn’t get in the way sterically).

Wonderful stuff to think and speculate about, now that we actually have some solid data to chew on.