Tag Archives: Enhancer

Lactose intolerance and the proteins of the synaptic cleft

What does lactose intolerance have to do with the zillions of proteins happily infesting the synaptic cleft?  Only someone whose mind was warped into very abstract thinking by rooming with philosophy majors in college would see a connection.

The synaptic cleft is of immense theoretical interest to neuroscientists, drug chemists and pharmacologists, and of great practical interest to people affected by neurologic and psychiatric disease either in themselves or someone they know (e.g. just about everyone).

Almost exactly a year ago I wrote a post about a great paper on the proteins of the synaptic cleft by Thomas Sudhof.  You may read the post after the *****

Well Dr. Sudhof is back with another huge review of just how synapses are formed [ Neuron vol. 100 pp. 276 – 293 ’18 ], which covers very similar ground.

It is clear that he’s depressed by the state of the field.  Here are a few quotes

“I believe that we may need to pay more attention to technical details than customary because the pressures on investigators have increased the tendency to publish preliminary results, especially results obtained with new methods whose limitations are not yet clear.”

Translation: a lot of the stuff coming out is junk.

“Given the abundance of papers reporting non-validated protein interactions that cannot possibly be all correct, it seems that confidence in a possible protein-protein interaction requires either isolation of a stable complex or biophysical measurements of interactions using recombinant purified proteins.”

Translation:  Oy vey !

“Pre- or postsynaptic specializations are surprisingly easy to induce by diverse signals. This was first shown in pioneering studies demonstrating that polylysine beads induce formation of presynaptic nerve terminals in cultured neurons and in brain in vivo.” Obviously this means that you have to be very careful when you claim that a given protein or two causes a synapse to form, which researchers have not been.”

Translation not needed.

Then on to the meat of the review.  “An impressive number of candidate synaptic Cell Adhesion Molecules (CAMs) has been described (9 classes are given each with multiple members). For some of these CAMs, compelling data demonstrate their presence in synapses and suggest a functional role in synapses. Others, however, are less well documented. If one looks at the results in total, the overall impression is puzzlement: how do so many CAMs contribute to shaping a synapse?”

Then from 281 – 286 he goes into the various CAMs, showing the extent and variety of proteins found in the synaptic cleft.  Which ones are necessary and what are they doing?  Can they all be important.  There must be some redundancy as knockout of some doesn’t do much.

Here is where lactose tolerance/intolerance comes in to offer succor to the harried investigator.

Bluntly, they must be doing something, and something important,  or they wouldn’t be there.

People with lactose intolerance have nothing wrong with the gene which breaks down lactose.  Babies have no problem with breast milk.  The enzyme (lactase)  produced from the gene is quite normal in all of us.  However 10,000 years ago and earlier, cattle were not domesticated, so there was no dietary reason for a human weaned from the breast to make the enzyme.  Something turned off lactase production — from my reading, it’s not clear what.   The control region (lactase enhancer) for the lactase gene is 14,000 nucleotides upstream from the gene itself.  After domestication of cattle, so that people could digest milk their entire lives a mutation arose changing cytosine to thymine in the enhancer.  The farthest back the mutation has been found is 6.500 years. 3 other mutations are known, which keep the lactase gene expressed past weaning.  They arose independently.  All 4 spread in the population, because back then our ancestors were in a semi-starved state most of the time, and carriers had better nutrition.

How does this offer succor to Dr. Sudhof?  Simply this, here is a mechanism to turn off production of an enzyme our ancestors didn’t need past weaning.  Don’t you think this would be the case for all the proteins found in and around the synapse.  They must be doing something or they wouldn’t be there.  I realize that this is teleology writ large, but evolutionary adaptations make you think this way.

*****

The bouillabaisse of the synaptic cleft

The synaptic cleft is so small ( under 400 Angstroms — 40 nanoMeters ) that it can’t be seen with the light microscope ( the smallest wavelength of visible light 3,900 Angstroms — 390 nanoMeters).  This led to a bruising battle between Cajal and Golgi a just over a century ago over whether the brain was actually made of cells.  Even though Golgi’s work led to the delineation of single neurons he thought the brain was a continuous network.  They both won the Nobel in 1906.

Semifast forward to the mid 60s when I was in medical school.  We finally had the electron microscope, so we could see synapses. They showed up as a small CLEAR spaces (e.g. electrons passed through it easily leaving it white) between neurons.  Neurotransmitters were being discovered at the same time and the synapse was to be the analogy to vacuum tubes, which could pass electricity in just one direction (yes, the transistor although invented hadn’t been used to make anything resembling a computer — the Intel 4004 wasn’t until the 70s).  Of course now we know that information flows back and forth across the synapse, with endocannabinoids (e. g. natural marihuana) being the major retrograde neurotransmitter.

Since there didn’t seem to be anything in the synaptic cleft, neurotransmitters were thought to freely diffuse across it to being to receptors on the other (postsynaptic) side e.g. a free fly zone.

Fast forward to the present to a marvelous (and grueling to read because of the complexity of the subject not the way it’s written) review of just what is in the synaptic cleft [ Cell vol. 171 pp. 745 – 769 ’17 ] http://www.cell.com/cell/fulltext/S0092-8674(17)31246-1 (It is likely behind a paywall).  There are over 120 references, and rather than being just a catalogue, the single author Thomas Sudhof extensively discusseswhich experimental work is to be believed (not that Sudhof  is saying the work is fraudulent, but that it can’t be used to extrapolate to the living human brain).  The review is a staggering piece of work for one individual.

The stuff in the synaptic cleft is so diverse, and so intimately involved with itself and the membranes on either side what what is needed for comprehension is not a chemist but a sociologist.  Probably most of the molecules to be discussed are present in such small numbers that the law of mass action doesn’t apply, nor do binding constants which rely on large numbers of ligands and receptors. Not only that, but the binding constants haven’t been been determined for many of the players.

Now for some anatomic detail and numbers.  It is remarkably hard to find just how far laterally the synaptic cleft extends.  Molecular Biology of the Cell ed. 5 p. 1149 has a fairly typical picture with a size marker and it looks to be about 2 microns (20,000 Angstroms, 2,000 nanoMeters) — that’s 314,159,265 square Angstroms (3.14 square microns).  So let’s assume each protein takes up a square 50 Angstroms on a side (2,500 square Angstroms).  That’s room for 125,600 proteins on each side assuming extremely dense packing.  However the density of acetyl choline receptors at the neuromuscular junction is 8,700/square micron, a packing also thought to be extremely dense which would give only 26,100 such proteins in a similarly distributed CNS synapse. So the numbers are at least in the right ball park (meaning they’re within an order of magnitude e.g. within a power of 10) of being correct.

What’s the point?

When you see how many different proteins and different varieties of the same protein reside in the cleft, the numbers for  each individual element is likely to be small, meaning that you can’t use statistical mechanics but must use sociology instead.

The review focuses on the neurExins (I capitalize the E  to help me remember that they are prEsynaptic).  Why?  Because they are the best studied of all the players.  What a piece of work they are.  Humans have 3 genes for them. One of the 3 contains 1,477 amino acids, spread over 1,112,187 basepairs (1.1 megaBases) along with 74 exons.  This means that just over 1/10 of a percent of the gene is actually coding for for the amino acids making it up.  I think it takes energy for RNA polymerase II to stitch the ribonucleotides into the 1.1 megabase pre-mRNA, but I couldn’t (quickly) find out how much per ribonucleotide.  It seems quite wasteful of energy, unless there is some other function to the process which we haven’t figured out yet.

Most of the molecule resides in the synaptic cleft.  There are 6 LNS domains with 3 interspersed EGFlike repeats, a cysteine loop domain, a transmembrane region and a cytoplasmic sequence of 55 amino acids. There are 6 sites for alternative splicing, and because there are two promoters for each of the 3 genes, there is a shorter form (beta neurexin) with less extracellular stuff than the long form (alpha-neurexin).  When all is said and done there are over 1,000 possible variants of the 3 genes.

Unlike olfactory neurons which only express one or two of the nearly 1,000 olfactory receptors, neurons express mutiple isoforms of each, increasing the complexity.

The LNS regions of the neurexins are like immunoglobulins and fill at 60 x 60 x 60 Angstrom box.  Since the synaptic cleft is at most 400 Angstroms long, the alpha -neurexins (if extended) reach all the way across.

Here the neurexins bind to the neuroligins which are always postsynaptic — sorry no mnemonic.  They are simpler in structure, but they are the product of 4 genes, and only about 40 isoforms (due to alternative splicing) are possible. Neuroligns 1, 3 and 4 are found at excitatory synapses, neuroligin 2 is found at inhibitory synapses.  The intracleft part of the neuroligins resembles an important enzyme (acetylcholinesterase) but which is catalytically inactive.  This is where the neurexins.

This is complex enough, but Sudhof notes that the neurexins are hubs interacting with multiple classes of post-synaptic molecules, in addition to the neuroligins — dystroglycan, GABA[A] receptors, calsystenins, latrophilins (of which there are 4).   There are at least 50 post-synaptic cell adhesion molecules — “Few are well understood, although many are described.”

The neurexins have 3 major sites where other things bind, and all sites may be occupied at once.  Just to give you a taste of he complexity involved (before I go on to  larger issues).

The second LNS domain (LNS2)is found only in the alpha-neurexins, and binds to neuroexophilin (of which there are 4) and dystroglycan .

The 6th LNS domain (LNS6) binds to neuroligins, LRRTMs, GABA[A] receptors, cerebellins and latrophilins (of which there are 4)_

The juxtamembrane sequence of the neurexins binds to CA10, CA11 and C1ql.

The cerebellins (of which there are 4) bind to all the neurexins (of a particular splice variety) and interestingly to some postsynaptic glutamic acid receptors.  So there is a direct chain across the synapse from neurexin to cerebellin to ion channel (GLuD1, GLuD2).

There is far more to the review. But here is something I didn’t see there.  People have talked about proton wires — sites on proteins that allow protons to jump from one site to another, and move much faster than they would if they had to bump into everything in solution.  Remember that molecules are moving quite rapidly — water is moving at 590 meters a second at room temperature. Since the synaptic cleft is 40 nanoMeters (40 x 10^-9 meters, it should take only 40 * 10^-9 meters/ 590 meters/second   60 trillionths of a second (60 picoSeconds) to cross, assuming the synapse is a free fly zone — but it isn’t as the review exhaustively shows.

It it possible that the various neurotransmitters at the synapse (glutamic acid, gamma amino butyric acid, etc) bind to the various proteins crossing the cleft to get their target in the postsynaptic membrane (e.g. neurotransmitter wires).  I didn’t see any mention of neurotransmitter binding to  the various proteins in the review.  This may actually be an original idea.

I’d like to put more numbers on many of these things, but they are devilishly hard to find.  Both the neuroligins and neurexins are said to have stalks pushing them out from the membrane, but I can’t find how many amino acids they contain.  It can’t find how much energy it takes to copy the 1.1 megabase neurexin gene in to mRNA (or even how much energy it takes to add one ribonucleotide to an existing mRNA chain).

Another point– proteins have a finite lifetime.  How are they replenished?  We know that there is some synaptic protein synthesis — does the cell body send packages of mRNAs to the synapse to be translated there.  There are at least 50 different proteins mentioned in the review, and don’t forget the thousands of possible isoforms, each of which requires a separate mRNA.

Old Chinese saying — the mountains are high and the emperor is far away. Protein synthesis at the synaptic cleft is probably local.  How what gets made and when is an entirely different problem.

A large part of the review concerns mutations in all these proteins associated with neurologic disease (particularly autism).  This whole area has a long and checkered history.  A high degree of cynicism is needed before believing that any of these mutations are causative.  As a neurologist dealing with epilepsy I saw the whole idea of ion channel mutations causing epilepsy crash and burn — here’s a link — https://luysii.wordpress.com/2011/07/17/we’ve-found-the-mutation-causing-your-disease-not-so-fast-says-this-paper/

Once again, hats off to Dr. Sudhof for what must have been a tremendous amount of work

Advertisements

Marshall McLuhan rides again

Marshall McLuhan famously said “the medium is the message”. Who knew he was talking about molecular biology?  But he was, if you think of the process of transcription of DNA into various forms of RNA as the medium and the products of transcription as the message.  That’s exactly what this paper [ Cell vol. 171 pp. 103 – 119 ’17 ] says.

T cells are a type of immune cell formed in the thymus.  One of the important transcription factors which turns on expression of the genes which make a T cell a Tell is called Bcl11b.  Early in T cell development it is sequestered away near the nuclear membrane in highly compacted DNA. Remember that you must compress your 1 meter of DNA down by 100,000fold to have it fit in the nucleus which is 1/100,000th of a meter (10 microns).

What turns it on?  Transcription of nonCoding (for protein) RNA calledThymoD.  From my reading of the paper, ThymoD doesn’t do anything, but just the act of opening up compacted DNA near the nuclear membrane produced by transcribing ThymoD is enough to cause this part of the genome to move into the center of the nucleus where the gene for Bcl11b can be transcribed into RNA.

There’s a lot more to the paper,  but that’s the message if you will.  It’s the act of transcription rather than what is being transcribed which is important.

Here’s more about McLuhan — https://en.wikipedia.org/wiki/Marshall_McLuhan

If some of the terms used here are unfamiliar — look at the following post and follow the links as far as you need to.  https://luysii.wordpress.com/2010/07/07/molecular-biology-survival-guide-for-chemists-i-dna-and-protein-coding-gene-structure/

Well that was an old post.  Here’s another example [ Cell vol. 173 pp. 1318 – 1319, 1398 – 1412 ’18 ] It concerns a gene called PVT1 (Plasmacytoma Variant Translocation 1) found 25 years ago.  It was the first gene coding for a long nonCoding (for proteins RNA (lncRNA) found as a recurrent breakpoint in Burkitt’s lymphoma, which sadly took a friend (Nick Cozzarelli) far too young as (he edited PNAS for 10 years).

So PVT1 is involved in cancer.  The translocation turns on expression of the myc oncogene, something that has been studied out the gazoo and we’re still not sure of how it causes cancer. I’ve got 60,000 characters of notes on the damn thing, but as someone said 6 years ago “Whatever the latest trend in cancer biology — cell cycle, cell growth, apoptosis, metabolism, cancer stem cells, microRNAs, angiogenesis, inflammation — Myc is there regulating most of the key genes”

We do know that the lncRNA coded by PVT1 in some way stabilizes the myc protein [ Nature vol. 512 pp. 82 – 87 ’14 ].  However the cell experiments knocked out the lncRNA of PVT1 and myc expression was still turned on.

PVT1 resides 53 kiloBases away from myc on chromosome #8.  That’s about 17% of the diameter of the average nucleus (10 microns) if the DNA is stretched out into the B-DNA form seen in all the textbooks.  Since each base is 3.3 Angstroms thick that’s 175,000 Angstroms 17,500 nanoMeters 1.7 microns.  You can get an idea of how compacted DNA is in the nucleus when you realize that there are 3,200,000,000/53,000 = 60,000 such segments in the genome all packed into a sphere 10 microns in diameter.

To cut to the chase, within the PVT1 gene there are at least 4 enhancers (use the link above to find what all the terms to be used actually mean).  Briefly enhancers are what promoters bind to to help turn on the transcription of the genes in DNA into RNA (messenger and otherwise).  This means that the promoter of PVT1 binds one or more of the enhancers, preventing the promoter of the myc oncogene from binding.

Just how they know that there are 4 enhancers in PVT1 is a story in itself.  They cut various parts of the PVT1 gene (which itself has 306,721 basepairs) out, and place it in front of a reporter gene and see if transcription increases.

The actual repressor of myc is the promoter of PVT1 according to the paper (it binds to the enhancers present in the gene body preventing the myc promoter from doing so).  Things may be a bit more complicated as the PVT1 gene also codes for a cluster of 7 microRNAs and what they do isn’t explained in the paper.

So it’s as if the sardonic sense of humor of ‘nature’, ‘evolution’, ‘God’, (call it what you will) has set molecular biologists off on a wild goose chase, looking at the structure of the gene product (the lncRNA) to determine the function of the gene, when actually it’s the promoter in front of the gene and the enhancers within which are performing the function.

The mechanism may be more widespread, as 4/36 lncRNA promoters silenced by CRISPR techniques subsequently activated genes in a 1 megaBase window (possibly by the same mechanism as PVT1 and myc).

Where does McLuhan come in?  The cell paper also notes that lncRNA gene promoters are more evolutionarily conserved than their gene bodies.  So it’s the medium (promoter, enhancer) is the message once again (rather than what we thought the message was).

 

Old paradigms die hard

A statement in a recent Nature editorial [ vol. 554 pp. 308 – 309 ’18 ] had me thinking that a real paradigm shift in our understanding of cancer was under way, but in fact it was an out of date paradigm that tripped up the editorialist.  Since breast cancer is likely to affect us individually or someone we know, it’s worth looking at this paper.

Ductal Carcinoma In Situ (DCIS) of the breast, is breast cancer confined to one of the ducts in the breast bringing milk to the nipple.  If it stayed there forever it would be harmless, like a benign mole on the skin. Unfortunately ‘up to’ 40% of DCIS invades the lining of the duct and the soft tissue of the breast becoming Invasive Ductal Carcinoma (IDC) where it is not harmless at all.  There is currently no way to tell which DCIS will stay quiet so everyone gets treated.

A heroic paper in cell (vol. 172 pp, 205 – 217 ’18 ) used the highest of high technology to study the question.  First they used Laser Capture Microdissection to separate a selected cell from its neighbors by tracing a laser beam around the cell.  Then they used laser catapulting in which energy from an ultraviolet laser propels the microdissected cell into a collection tube.  Then they performed exon sequencing on the collected cells (e.g. they sequenced the parts of the gene coding for protein), comparing cells which were DCIS from IDCs.  Some 1,293 cells from 10 patients were studied.

There was an average of 23 mutations/patient.  “The transition from DCIS to IDC was not associated with a notable increase in the number of mutations.”  “The authors’ main finding is the remarkable genetic similarity of a patient’s tumor cells in these two distinct states”

Hello.

I thought mutations caused cancer and that the more you had the worse the cancer.  Not so in this paper. A paradigm shift indeed.

What’s wrong with this thinking?  Think a bit before reading further.

If you are old enough, you may remember statements that we were 98% chimps based on our genome (or at least what was known of it at the time).  This is because the sequence of the amino acids in our 20,000 or so proteins varies only by 2% from that of the chimp.

That proves it.  Except that it doesn’t.  Amazingly enough, the amount of all 3,200,000,000 positions of our genome coding for protein is under 2%.  So 98% of or genome does NOT code for protein.  It contains the code to determine when, for how long, and where each gene is made into messenger RNA which is then made into protein.

An analogy may help.

This is like saying Monticello and Independence Hall are just the same because they’re both made out of bricks. One could chemically identify Monticello bricks as coming from the Virginia piedmont, and Independence Hall bricks coming from the red clay of New Jersey, but the real difference between the buildings is the plan.

It’s not the proteins, but where and when and how much of them are made. The control for this (plan if you will) lies outside the genes for the proteins themselves, in the rest of the genome (remember only 2% of the genome codes for the amino acids making up our 20,000 or so protein genes). The control elements have as much right to be called genes, as the parts of the genome coding for amino acids. Granted, it’s easier to study genes coding for proteins, because we’ve identified them and know so much about them. It’s like the drunk looking for his keys under the lamppost because that’s where the light is.

On this point it would be very worthwhile to look beyond the genes mutated in both sets of tumors, sequencing their promotors and enhancers.  I think it would likely show profound differences.

No further posts for a while.  We’re going to visit a new grandson, 3 days old, whose parents apparently lack the creativity to name him.

 

Activating a proto-oncogene without mutating it

Many proto-oncogenes have to be mutated to cause cancer. Not so the TAL1, LMO2 genes. They drive blood formation, and are aberrantly activated (e.g. more proteins made from them is expressed) in T cell Acute Lymphoblastic Leukemia (TALL). [ Science vol. 351 pp. 1298- 1299, 1454 – 1458 ’16 ] activated them experimentally using the CRISPR technique, and therein hangs a tale.

Addendum 11 April — LMO2 is well known to gene therapists as early work (2002) using retroviruses inserted randomly in the genome to cure SCID (Severe Combined Immunodeficiency) resulted in TALL in 4kids.  The problem was that the vector integrated in multiple sites all over the genome and one such random site  turned on expression of LMO2.

I’ve written a series of six posts trying to imagine the incredible mass of DNA in a 10 micron nucleus on a human scale — we take it for granted, but it’s far from obvious how this is accomplished — here’s the link to the first — https://luysii.wordpress.com/2010/03/22/the-cell-nucleus-and-its-dna-on-a-human-scale-i/. — just follow the links to the rest.

[ Cell vol. 153 pp. 1187 – 1189, 1281 – 1295 ’13 ] Hi-C and 5C (Carbon Copy Chromosome Conformation Capture) allow determination of chromatin organization and long range chromatin interactions in an unbiased genome wide manner at the megaBase scale. Topologically associated domains (TADs) are the way the genome in the nucleus is organized into megabase to submegaBase sized interacting domains. TADs are conserved between species and are invariant across cell types. [ Call vol. 156 p. 19 ’14 ] They average 700 – 800 kiloBases and are said to contain 5 – 10 protein coding genes and a few hundred enhancers. The expression of genes within a TAD is ‘somewhat correlated’. Some TADs have active genes, while others have repressed genes. Genomic interactions are strong within a domain, but are sharply depleted on crossing the boundary between two TADs.

Well TADs have to be separated from each other. The current thinking is that the boundaries are formed by sites in the DNA which bind the CTCF protein, and possibly cohesin proteins as well. CTCF is a large protein (although maddeningly I can’t seem to find out how many amino acids it has) with a molecular mass of 80 kiloDaltons. It’s DNA binding is quite specific as it contains 11 zinc fingers (each of which can specifically bind a 3 nucleotide stretch of DNA). In addition to binding to DNA it can bind to itself, forming a perfect way to form loops of DNA.

All the Science paper did was to delete a few CTCF binding sites using the CRISPR technique around the two oncogenes and bang — expression increased. Why?  Because the insulation between the TAD containing the genes and adjacent TADs was broken, allowing control of the genes by enhancers in the new and larger TAD that had been previously sequestered in an adjacent TAD.  The deletions were thousands of basepairs away from the coding sequence of the genes themselves.  All very nice, but it’s fairly artificial.

However the paper notes that across a large pan-cancer cohort, there was a 2 fold enrichment for boundary CTCF site mutations.