Tag Archives: C9ORF72

A new way to look at ALS (thank God)

It’s always good when a new way to look at a basically untreatable disease comes along.  We’ll know soon if looking at filamin A will be useful for Alzheimer’s disease.  Here’s another:  something we’ve known about for years (polyphosphate) may be important in Amyotrophic Lateral Sclerosis (ALS).   I used riluzole for ALS, but never saw any benefit.  It may have slowed the decline, but riluzole never stopped disease progression.

It is stated that 10% of ALS is familial, but I think this is an overstatement.  Even so mutations in a variety of proteins(superoxide dismutase 1 (SOD1) TDP43, C9orf72) do cause ALS, and studying them has taught us a lot about ALS.  There is plenty of work to do.  In 2016 a mere 160 mutations in the 153 amino acids of SOD1 had been found, but we still don’t know how they cause ALS despite hundreds of papers on the subject.  The proteins have allowed us to make mouse models of ALS, by putting in one or the other of mutated SOD1, TDP43, C9orf72 in motor neurons (or in whole animals)

Some real gumshoe work led to polyphosphate [ Neuron vol. 110 pp. 1603 – 1605 ’22 ].  Obviously in ALS, the motor neurons die, but recent work has shown that motor neurons are killed by neighboring astrocytes (containing any of the 3 the mutant proteins), when they are cultured together.   Normal astrocytes don’t do this.

So a lot of hard work found that it was polyphosphate in the supernatant fluid that was the killer.

So what is polyphosphate?  It’s been known for years, and is found in ALL cells — bacterial, plant, animal.  It also produced abiotically in volcanic exudates and deep sea steam vents.  No one knows what it does, so it has been called a molecular fossil.  Again teleology should inform biologic research (but it doesn’t).  Polyphosphate must be doing something useful or it wouldn’t be present in all living cells.

Chemically, polyphosphate is a chain of HUNDREDS to THOUSANDS of phosphate residues linked by high energy phosphoanhydride bonds.

Like this —

HO – PO2 – OH  + HO -PO2 -OH –>  HO – PO2 – 0 – PO2 – OH + H20

— the – O – in the middle is the phosphoanhydride bond

The authors treated motor neurons in culture with polyphosphate and found that it killed 40% of them.  So what?  Schmidt’s law of pharmacology, says that enough of anything will do anything,  So they looked at the spinal cords of patients dying of ALS and found that polyphosphate levels were higher than in neurologically normal controls.

So it’s open season on polyphosphate. Finding out what it does in normal cells, finding out how it kills motor neurons, finding out if decreasing its levels will help ALS (it does in cultures of motor neurons but that’s a long way from a living patient).  It’s an entirely new angle on an awful disease, with no useful treatment.  There is simply an enormous amount of work to be done.

Watch this space.

 

 

What reading the literature is like when things are barely understood

There is a very exciting paper to be described in a post to appear shortly. I ran a muscular dystrophy clinic for 15 years, and saw lots of Amyotrophic Lateral Sclerosis (ALS) — even though, strictly speaking it is not a muscular dystrophy. The muscular Dystrophy Association was founded by parents of weak children, before we could actually separate motor neuron disease from myopathy. In retirement, I’ve kept up an interest in ALS (particularly since all I could do for patients as a doc was — (drumroll) — basically nothing).

The fact that a fair amount of even sporadic ALS has a problem with a protein called C9ORF72 was particularly fascinating. All this came out less than five years ago (October 2011). Everything is far from clearcut even now.

That being the case, it might be of interest to look at the notes I accumulated as scientists began to explore what was wrong with C9ORF72, how the protein normally does whatever it does (we still don’t know really) and how the mutated product of the gene causes trouble (there are 3 main theories).

What you’ll see in what follows is the heat of scientific battle (warts and all), where things are far from clear. Enjoy. This is basically what used to be called a core-dump (back in the day when computer memory was made of metallic cores). Things are far from cut and dried even now so it might be of interest to see the many angles of attack on the problem, the confusion, the conflicting theories, as things became a bit more clear. It’s the scientific enterprise in action against a very horrible disease (trust me).

I’ll try and clear up the typos. I’ll also try to put the notes on the papers in semi-chronological order, but I make no guarantees. The notes may be incomprehensible, as they include only what I didn’t know rather than all the background needed to understand what’s in them .

First a bit of background — FTD stands for FrontoTemporal Dementia.

The #9p21 chromosomal region is another locus for ALS/FTD. It contains something called C9orf72, which contains a GGGGCC hexnucleotide repeat in the intron between noncoding exons 1a and 1b. Normal alleles contain less than 24 repeats (range 2 – 23). Those with ALS + FTD contain over 30 (actually they think the repeat length is much higher — 700 to 1,600 ! ! !). ORF probably stands for open reading frame.

The expansion is present in 12% of familial FTD and 22.5% of familial ALS — making it the most common genetic abnormality in both conditions. More importantly it is found in 21% of sporadic ALS and 29% of FTD in the Finnish population. Later they say it is the most common genetic cause of sporadic ALS (but only in 4%).

There are 3 possible mechanisms of toxicity
l. The RNA transcribed from the repeat acts as an RNA sponge, binding all sorts of RNAs it shouldn’t
2. Repeat Assoaicted Non-ATG translation (RAN translation) see later
3. Decreased expression of the mRNA for C9ORF72.

[ Science vol. 338 pp. 1282 – 1283 ’12 ] Now 40% of familial ALS, 21% of familial frontotemporal dementia, and 8% of sporadic ALS, 5% of sporadic frontotemporal dementia have expansions in C9orf72.

Not much is known about C9orf72 — it is conserved across species. It contains no previously known protein domains. The expansion leads to loss of one alternatively spliced C9ORF72 isoform (normally 3 isoforms are expressed), and to the formation of nuclear RNA foci (which appear to be composed mostly of the expansion). [ Neuron vol. 79 pp. 416 – 438 ’13 ] The function of C9ORF72 is unknown (8/13).

The current (12/12) thinking is that the repeats produce a glob of RNA which traps RNA binding proteins which have better things to do. The best analogy is myotonic dystrophy in which an expanded 3 nucleotide repeat sequesters muscleblind, an RNA binding protein involved in splicing.

The expansion is present in 46% of familial ALS in Finland and 21% of sporadic ALS there. But Finns are somewhat different genetically. The expansion is found in 1/3 of European ancestry familial ALS.

Interestingly some of the patients with FTD presented with nonfluent progressive aphasia.

[ Cell vol. 152 pp. 691 – 698 ’13, Neuron vol. 77 pp. 639 – 646 ’13 ] The protein aggregates of C9orf72 mutants contain TDP43 inclusions. But they also show additional p62 and ubiquilin positive pathology (with no TDP43 present). The abnormal proteins are due to translation of the expanded GGGGCC repeats (which should be nonCoding as they are in introns). This is an example of Repeat Associated Non-ATG translation (RAN). This was first shown for expanded CAG repeats, which can be translated in all 3 reading frames giving polyGlutamine, polyLysine and polySerine . A minimum of 58 CAG repeats was required for translation.

This work looked for translation of GGGGCC in all 3 reading frames (poly glycine-proline, poly glycine-alanine, polyglycine-arginine. They found that poly glycine-proline was found and in the protein inclusions which were p62 positive and TDP43 negative. Similar inclusions weren’t present in other neurodegenerative diseases, known to have nucleotide inclusions.

[ Proc. Natl. Acad. Sci. vol. 110 pp 7533 – 7534, 7778 – 7783 ’13 ] The expanded C9orf72 repeat is enough to cause neurodegeneration (mammalian neurons, and D. melanogaster). They placed either 3 or 30 copies of GGGCC into an epidermal growth factor vector between the start of transcription and the first ATG codon. The repeat can sequester the RNA binding protein Pur alpha (and other Pur family members). Interestingly, TDP43 didn’t bind to the repeat RNA, nor did hnRNP A2/B1 which binds to fragile X CGG repeat containing RNA. Overexpression of of Pur alpha is able to abort the neurogeneration in the mammalian neuonal cell line (Neuro-2a). So probably the excessive repeat number is acting as an RNA sponge.

Pur alpha is evolutionarily conserved. It controlls the cell cycle and differentiation. It is also a pomonent of the RNA transport granule. It interacts with Pur beta.

30 was as many repeats as they could manipulate experimentally — normals have 2 – 8 repeats, but patients with disease have from 100s to 1,000s of repeats, so the pathogenesis might be different.

[ Neuron vol. 80 pp. 257 – 258, 415 – 428 ’13 ] Expression of C9orf72’s mRNA in frontotemporal dementia/als (FTD/ALS) patients is reduced by 50%, and the expanded repeat and neighboring CgP islands are hypermethylated consistent with transcriptional silencing. Also the cytoplasmic aggregates staining positively for P62 appear to result from protein translation through the hexanucleotide repeat.

This work used induced pluripotent stem cells (iPSCs) derived from C9ALS/FTD patients. They show decreased C9orf72 mRNA, nuclear and cytoplasmic GGGGCC RNA foci, and expression of one RAN product (Gly Pro dipeptide). Neurons derived from the iPSCs also show enhanced sensitvity to glutamic acid excitotoxicity, and a transcriptional profile that ‘partially’ overlaps with transcriptional changes seen in iPSC neurons derived from mutant SOD1 ALS patients.

In addition, some 19 proteins were found which associate with the GGGGCC repeats in vitro. ADARB2 does this and participates in RNA editing.

ASOs (AntiSense OIigonucleotides ??) were used to suppress C9orf72 RNA expression. This led to reversal in many of the phenotypes of the iPSC neurons (suppression of glutamic acid toxicity, reduction in RNA foci formation). This implies that the GGGGCC repeats trigger toxicity through a gain of function mechanism. [ Proc. Natl. Acad. Sci. vol. 110 pp. E4530 – E4539 ’13 ] Nuclear RNA foci containing GGGCC in patient cells (wbc’s fibroblasts, glia, neurons) were ssen in patients with repeat expansion. The Foci weren’t present in sporadic ALS or ALS/FTD caused by other mutations (SOD1, TDP43, tau), Parkinsonism, or nonNeurological controls. Antisense oligonucleotides reduced the GGGGCC containing nuclear foci without alteraling overall C9orf72 RNA levels. SiNRAS didn’t work.

The Rx was applied to living mice and it was well tolerated.

[ Proc. Natl. Acad. Sci. vol. 110 pp E4968 – E4977 ’13 ] C9orf72 antisense transcripts are elevated in the brains of those with the expansion. Repeat expansion GGCCCC RNAs accumulate in nuclear foci in the brain. Sense and antisense foci accumulate in the blood and are potential biomarkers. RAN translation occurs in BOTH sense and antisense expansion transcripts — so all 6 proteins described above are made. The proteins accumulate in cytoplasmic aggregates in affected brain regions (e.g. frontal and motor cortex, spinal cord neurons).

[ Nature vol. 507 pp. 175 – 177, 195 – 200 ’14 ] C9orf72 has repeated hexanucleotide units (GGGGCC). Two or more G quartets stacked on top of one another form a G-quadruplex. In the expanded repeats of C9orf72 in ALS and frontotemporal dementia, stable quadruplexes form in DNA as well as the RNA transcribed from it.

Sequences which can form G-quadruplexes are conserved during evolution, so they presumably are doing something useful. They are found in transcriptional start sites. This work shows that G-quadruplex assembly in DNA increases transcriptional pauses in the expanded repeat (unsurprising). Also the G-quadruplexes in C9orf72 DNA promote the formation of stable R-loops — triple stranded structures that assemble when a newly form RNA transcript exiting RNA polymerase II invades the double helix and binds to one DNA strand, displacing the other. If the R-loops aren’t resolved, they can halt transcriptional elongation.

Not only that, but abortive GGGGCC containing RNAs accumulate in the spinal cord and motor cortex of patients with the expanded repeats. The RNAs are truncated in the GGGGCC region, and the amount is linearly proportional to the length of the hexanucleotide repeat. This explains how they could accumulate along with decreased level of full length C9orf72 mRNA (and presumably the protein made from it).

A ‘few dozen’ proteins binding the GGGGCC repeats have been found. One of them is nucleolin, involved in the formation of the ribosome within the nucleolus It is mislocalized to RNA foci in neurons of the motor cortex of patients with C9orf72 related disease. The lack of mature ribosomes results in the buildup of untranslated mRNA in the cytoplasm.

[ Science vol. 345 pp. 1118 – 1119, 1139 – 1145, 1192 – 1194 ’14 ] Normally the number of GGGGCC repeats in C9orf72 ranges from 2 to 23, with hundreds or even thousands of copies in the disease range. Possibilities
l. Interference with C9orf72 expression — e. g. loss of function
2. Sponging up RNA binding proteins by the transcript
3. Repeat associated non-ATG translation (RAN translation) in all reading frames (sense and antisense).

A series of stop codons in both the sense and antisense RNAs was engineered every 12 repeats, stopping formation of the dipeptide repeat proteins. The new RNAs still formed the G-quadruplexes, and both RNAs formed RNA foci when expressed in cultured neurons.

Putting them into Drosophila showed that the pure repeats able to form dipeptides causing degeneration in the fly eye, while the interrupted constructs (producing RNA only) did not. The same was true when expressed in the nervous systems of adult flies. Blocking translation of the RNA partially suppressed the phenotype.

There are 5 possible dipeptide products of RAN of GGGGCC (GA, GP, PA, GR, PR — G == Glycine, P == Proline, A == Alanine, R = Arginine). Then RNAs using alternate codons for the dipeptides were used (so GGGGCC wasn’t present). Expressing Glycine Arginine (GR) or Proline Arginine (PR) was toxic, Glycine Alanine showing ‘some’ toxicity later in life.

Some RNA binding proteins containing low complexity sequences (aka prion-like domains) — these are FUS, EWSR1, TAF14, hnRNPA2 — form polymeric assemblies, which incorporate into hydrogels in vitro. The assemblies are similar to RNA granules. Many of the RNA binding proteins associating with hydrogels hare serine arginine (SR) sequences. The SR domain proteins are regulated by phosphorylation on serine, also controlling the association with hydrogels. It is hypothesized that the GR and PR transcripts associate with hydrogels (or similar assemblies such as RNA granules), but are impervious to the regulatory action of the kinases (no serine to phosphorylate), so they might clog up the trafficking of SR domain containing RNA binding proteins moving in an out of the granules to transfer information throughout the cell.

[ Neuron vol 84 pp. 1213 – 1225 ’14 ] Proline Arginine dipeptides are neurotoxic. They form aggregates in nucleoli in experimental systems. Nuclear aggregates were also found in postmortem spinal cord from C9ORF72 ALS and ALS/FTD patients. Intronic GGGGCC transcripts are also toxic. Repeat associated non-ATG translation (RAN translation) is thought to depend on RNA hairpin structures using GC pairing.

[ Cell vol. 158 pp. 967 ’14 (abstract of something to appear in Science) ] Peptide translated from GGGGCC expansions containng arginines (Gly Arg and Pro Arg) are harmful — 3 other dipeptide repeats are harmless. The peptides bind to nucleoi and impede RNA biogenesis. Interestingly Ser-Arg repeats proteins (SR proteins) are important in RNA splicing. The GlyARG and PROARG repeat peptides alter splicing of the amino acid transporter EAAT2, similar to that seen in ALS. Interestingly, the peptides are readily taken up by cells in culture, translocating to the nucleus.

Also a small molecule has been developed which targets GGGGCC RNA expansions. It inhibits translation of the dipeptide repeat proteins from the expansions (see Science vol. 353 pp. 64 ****

GlyPro in CSF is a biomarker of ALS patients with the C9orf7s expansion.

The normal function of C9orf72 isn’t known. It is structurally related to DENN (Differentially Expressed in Normal and Neoplastic cells) proteins, which are GDP/GTP exchange factors for Rab GTPases.

At this point it isn’t known if the proteins generated by RAN are toxic. The protein inclusions are present in unaffected areas of the brain (lateral geniculate) as well as the vulnerable areas (cortex, hippocampus).

The initiation of RNA translation is thought to depend on RNA hairpin structures which use C:G complementary pairing. CAG (but not CAA) repeats undergo RAN translation. Protein aggregates occured only in brain intestes despite the fact that C9orf72 is expressed all over the body (but expression is highest in brain).

It is possible that antisense RNA could be formed from the opposite strand (e.g. CCCCGG) giving poly pro-ala, poly pro-gly and poly pro-arg.

[ Science vol. 1106 – 1112 ’15 ] Just expressing 66 GGGGCC repeats without an ATG start codon using an AdenoAssociated Virus (AAV) vector in mice was enough to produce neurodegeneration with RNA foci, inclusoins of poly QP, GA and GR and TDP43 pathology. There was cortical neuron and cerebellar Purkinje cell loss and gliosis.

[ Nature vol. 525 pp. 36 – 37, 56 – 61, 129 – 133 ’15 ] (GGGGCC)30 was expressed in the Drosophila eye. This leads to the rough eye trait and is easily scored, allowing you to look at the effect of other genes on it. Mutations activating RanGAP suppressed rough eyes. RanGAP binds to GGGGCC on the cytoplasmic face of the nuclear pore. Enhancing nuclear import or suppressing nuclear export of proteins also suppressed neurodegeneration. RanGAP physically interacts with the GGGGCC Hexanucleotide Repeat Expansion resulting in its mislocalization. The mislocalization is found in neurons derived from iPSCs from a patient with C9orf72 type ALS, and also in brain tissue from other patients with C9orf72 ALS.

Nuclear import is impaired due to HRE expression (fly and iPSC derived neurons). The defects can be ‘rescued’ by small molecules and antisense oligonucleotides targeting the HRE G-quadruplexes. This may actually be a way to Rx ALS ! ! ! !

Another paper crossed (GGGGCC)58 flies with missing chromosomal segments. They found a variety of nuclear import factors whose inactivation worsened rough eye.

Expression of constructs of in GGGGCC)8, 28 and 58 lacking an AUG start codon in Drosophila was done. The constructs could only produce Repeat Associated NonAUG translation products (e.g. dipeptides). The dipeptides disrupt nuclear import of fluorescent test substrates and of normal nuclear proteins (notably TDP43). In addition RNA export from the nucleus is also compromised. The deleterious effects could be modified by 18 genetic regions (found by large scale unbiased genetic screening). THey coded for components of the nuclear pore complex, nuclear RNA export machinery and nuclear import.

Dipeptides produced from GGGGCC and GGGGCCn’s disrupt the nucleolus, so this may be an additional cause of repeat toxicity.

[ Neuron vol. 88 pp. 892 – 901 ’15 ] A mouse model containng the full human C9orf72 repeat which was either normal (15 repeats) or expanded (100 – 1,000 repeats) — using bacterial artificial chromosomes (BACs) — thes mice are called C9-BACexpanded. They show widespread RNA foci and RAN translated dipeptides. Nucleolin distribution was altered. However the mice showed normal behavior and there was no neurodegenration. This is surprising.

[ Nature vol. 535 p. 327’16 (abstr. of Sci. Transl. Med ’16) ] Mice with mutations diminishing or eliminating the function of C9ORF72 (unknown as of 8/13) developed autoimmune disease.

[ Science vol. 351 pp. 1324 – 1329 ’16 ] Two independent mouse lines lacking the ortholog of C9orf72 (3110043021Rik) in all tissues developed normally and aged without any motor neuron disease. Instead they developed progressive splenomegaly and lymphadenopathy with accumulation of engorged macrophagelike cells. There was age related neuroInflammation similar to C9orf72 ALS but not sporadic ALS. There was no evidence of neurodegeneration however.

[ Neuron vol. 90 pp. 427 – 430, 531 -534, 535 – 550 ’16 ] BAC transgenic mice using patient derived gene constructs expressing (some of? all of?) C9ORF72 are reported.

A germline knockout develops blood abnormalities (splenomegaly, lymphadenopathy and premature death). The data conflict on which of the 5 products of RAN (Repeat Associated NonATG) translation are the most toxic (GP, GA, GR, PA, PA, PR).

In this study, mice with increased levels of repeats (up to 450) showed no evidence of motor neuron disease, and the brain was normal. They at least did have some trouble with cognition.

THe second study put in the full C9 gene with 5′ and 3′ flanking sequences. 4 lines of transgenics with repeats ranging from 37 to 500 were characterized. These mice did have peirpheral and central neurodegeneration, with motor deficits. There was a decrease in cortical neurons, Purkinje cells. This is the first time any transgenic has shown neurodegeneration. The deficits are reversible with antisense oligonucleotides. There was a disparity in disease expression between male and female mice.

RNA foci and DPR (DiPeptide Repeat) proteins don’t accumulate in the most affected brain regions.

[ Science vol. 353 pp. 647 – 648, 708 – 712 ’16 ] Spt4 is a highly conserved transcription elongation factor which regulates RNA polymerase II processivity (along with its binding partner Spt5). Spt4 is required to transcribe long trinucleotide repeats found in open reading frames, or in non protein coding regions of DNA templates (in S. cerevisiae). Mutations of Spt4 decrease synthesis of (and restored enzymatic activity to) expanded polyQ proteins (in yeast) without affecting genes lacking the excessive CAG repeats. It might also work in nonCAG repeats.

Targeting Spt4 (with antiSense oligonucleotides) reduces production of the C9orf72 expansion associated RNA and protein, and helps neurodegeneration in model systems. Repeat expansions are transcribed in both the sense and antisense directions. Yeast Spt4 (human homolog SUPT4H) is a small evolutionarily conserved zinc finger protein which forms a complex with Spt5, which then binds to RNA polymerase II regulating transcription elongation (pol II processivity).

DRB is a RNA polymerase II inhibitor. The complex of Spt4 and Spt5 homologs in man (SUPT4H, SUPT5H) is called DSIF (DRB Sensitivity Inducing Factor)

Depletion of Spt4 or its binding partner (Spt5 ) decreases the number of both sense and antisense repeat transcripts and RNA foci. One of the 6 RAN translation products (polyGlyPro) is substantially reduced by Spt4 depletion.

The study was in human c9ALS fibroblasts. However, side effects are certainly possible — in addition to decreasing the expression of C9ORF72, 95% depletion of SUPT4H1 altered (how?) the expression of another 300 genes. In mice deletion of both copies of SUPT4 is embryonic lethal, but deleting one produced no effects up to 18 months of age.