Tag Archives: BRICHOS

The other uses of amyloid (not all bad)

Neurologists and drug chemists pretty much view amyloid as a bad thing.  It is the major component of the senile plaque of Alzheimer’s disease, and when deposited in nerve causes amyloidotic polyneuropathy.  A recent paper and editorial casts amyloid in a different light [ Cell vol. 173 pp. 1068 – 1070, 1244 – 2253 ’18 ].  However if amyloid is so bad why do cytomegalovirus, herpes simplex viruses and E. Coli make proteins to prevent a type of amyloid from forming.

Cell death isn’t what it used to be.  Back in the day, they just died when things didn’t go well.  Now we know there are a variety of ways that cells die, and all of them have rather specific mechanisms.  Apoptosis (aka programmed cell death) is a mechanism of cell death used widely during embryonic development.  It allows the cell to die very quietly without causing inflammation.  Necroptosis is entirely different, it is another type of programmed cell death, designed to cause inflammation — bringing the immune system in to attack invading pathogens.

Two proteins (Receptor Interacting Protein Kinase 1 — RIPK1, and RIPK3) bind to each other forming amyloid, that looks for all the world like typical amyloid –it binds Congo Red, shows crossBeta diffraction and has a filamentous appearance.  Fascinating chemistry aside, the amyloid formed is crucial for necroptosis to occur, which is why various bugs try to prevent it.

The paper above describes the structure of the amyloid formed — unusual in itself, because until now amyloid was thought to involve the aggregation of a single protein.

The proteins are large: RIPK1 contains 671 amino acids, and RIPK3 contains 518.  They  both contain RHIMs (Receptor interacting protein Homotypic Interaction Motifs) which are fairly large themselves (amino acids 496 – 583 of RIPK1 and 388 – 518 of RIPK3).  Yet the amyloid the two proteins form use a very small stretches (amino acids 532 – 543 from RIPK1 and 451 – 462 from RIPK3).  How the rest of these large proteins pack around the beta strands of the 11 amino acid stretches isn’t discussed in the paper.  Even within these stretches, it is two consensus tetrapeptides (IQIG from RIPK1, and VQVG from RIPK3) that do most of the binding.

Even if you assume that I (Isoleucine) Q (glutamine) G (glycine) V (valine) occur at a frequency of 5%, in our proteome of 20,000 proteins assuming a length of amino acids IQIG and VQVG should occur 10 times each.  This may explain why 300/20,000 of our proteins contain a 100 amino acid  segment called BRICHOS which acts as a chaperone preventing amyloid formation. For details see — https://luysii.wordpress.com/2018/04/01/a-research-idea-yours-for-the-taking/.

Just another reason to take up the research idea in the link and find out just what other things amyloid is doing within our cells in the course of their normal functioning.

 

Advertisements

A research idea yours for the taking

Why would the gene for a protein contain a part which could form amyloid (the major component of the senile plaque of Alzheimer’s disease) and another part to prevent its formation. Therein lies a research idea, requiring no grant money, and free for you to pursue since I’ll be 80 this month and have no academic affiliation.

Bri2 (aka Integral TransMembrane protein 2B — ITM2B) is such a protein.  It is described in [ Proc. Natl. Acad. Sci. vol. 115 pp. E2752 – E2761 ’18 ] http://www.pnas.org/content/pnas/115/12/E2752.full.pdf.

As a former neurologist I was interested in the paper because two different mutations in the stop codon for Bri2 cause 2 familial forms of Alzheimer’s disease  Familial British Dementia (FBD) and Familial Danish Dementia (FDD).   So the mutated protein is longer at the carboxy terminal end.  And it is the extra amino acids which form the amyloid.

Lots of our proteins form amyloid when mutated, mutations in transthyretin cause familial amyloidotic polyneuropathy.  Amylin (Islet Amyloid Polypeptide — IAPP) is one of the most proficient amyloid formers.  Yet amylin is a protein found in the beta cell of the pancreas which releases insulin (actually in the same secretory granule containing insulin).

This is where Bri2 is thought to come in. It is also found in the pancreas.   Bri2 contains a 100 amino acid motif called BRICHOS  in its 266 amino acids which acts as a chaperone to prevent IAPP from forming amyloid (as it does in the pancreas of 90% of type II diabetics).

Even more interesting is the fact that the BRICHOS domain is found in 300 human genes, grouped into 12 distinct protein families.

Do these proteins also have segments which can form amyloid?  Are they like the amyloid in Bri2, in segments of the gene which can only be expressed if a stop codon is read through.  Nothing in the cell is perfect and how often readthrough occurs at stop codons isn’t known completely, but work is being done — Nucleic Acids Res. 2014 Aug 18; 42(14): 8928–8938.

I find it remarkable that the cause and the cure of a disease is found in the same protein.

Here’s the research proposal for you.  Look at the other 300 human genes containing the BRICHOS motif (itself just a beta sheet with alpha helices on either side) and see how many have sequences which can form amyloid.  There should be programs which predict the likelihood of an amino acid sequence forming amyloid.

It’s very hard to avoid teleology when thinking about cellular biochemistry and physiology.  It’s back to Aristotle where everything has a purpose and a design.  Clearly BRICHOS is being used for something or evolution/nature/natural selection/the creator would have long ago gotten rid of it.  Things that aren’t used tend to disappear in evolutionary time — witness the blind fish living in caves in Mexico that have essentially lost their eyes. The BRICHOS domain clearly hasn’t disappeared being present in over 1% of our proteins.

Suppose that many of the BRICHOS containing proteins have potential amyloid segments.  That would imply (to me at least) that the amyloid isn’t just junk that causes disease, but something with a cellular function. Finding out just what the function is would occupy several research groups for a long time.   This is also where you come in.  It may not pan out, but pathbreaking research is always a gamble when it isn’t stamp collecting.