Tag Archives: Blood brain barrier

What is docosahexenoic acid and why should you care?

Why should drug chemists care about docosahexenoic acid — it’s a fairly trivial organic structure as these things go – a 22 carbon straight chain carboxylic acid with 6 double bonds — https://en.wikipedia.org/wiki/Docosahexaenoic_acid. However the structure is decidedly non-random (see later)

Docosahexenoic acid turns out to be crucial for the function of the blood brain barrier (BBB), something that makes it very difficult to get drugs into the brain. Years of work have shown that the only drugs able to get through the BBB are small lipid soluble molecules of mass under 400 kiloDaltons with fewer than 9 hydrogen bonds. Certainly not a large group of drugs. The more we know about the BBB, the more likely we’ll be able to figure out something to circumvent it.

The BBB was known to exist more than 100 years ago. Ehrlich found that dyes injected into the circulation were rapidly taken up by all organs except the brain. His student E. Goldmann found that dye injected into the CSF stained the brain but not other organs.

The barrier has at least two components — (1) a very tight seal between the cells lining brain blood vessels (e.g. the endothelium) — see the end of the post — (2)very low transfer across the endothelial cell from the vessel lumen. The latter is called transcytosis and involves formation of small vesicles at the lumenal surface of the endothelium, migration across the endothelial cell with release of vesicle content on the other side.

In general there are two mechanisms of transcytosis — clathrin coated pits, and caveolae. Brain endothelium shows very low rates of transcytosis. There aren’t any coated pits (no explanation I can find) and the rate of caveolar transcytosis is very low.

Dococsahexaenoic acid is the reason for the low rate of caveolar transcytosis. Here is why.

[ Nature vol. 509 pp. 432 – 433, 503 – 506, 507 – 511 ’14 Neuron vol. 82 pp. 728 – 730 ’14 ] An orphan transporter, MFSD2a (Major Facilitator Superfamily Domain containing 2a) is selectively expressed in the BBB endothelium. It is REQUIRED for formation and maintenance of BBB integrity. Animals lacking MFSD2a show uninhibited bulk transcytosis across the endothelium. The animals show no obvious defects in the junctions between the endothelial cells. Pericytes (cells in the brain layer after the endothelium) are important in keeping the levels of MFSD2a at normal levels as animals lacking them show the same defects in the BBB as those lacking MFSD2a. Even though knockouts don’t have much of a BBB, they have normal patterning of vascular networks.

MFSD2a is the major transporter of docohexaenoic acid (DHA), an omega3 fatty acid (more later). DHA isn’t made in the brain and must be transported into it. Knockouts have reduced levels of DHA in the brain accompanied by neuronal loss in the hippocampus and cerebellum and microcephaly. Human cases due to mutation are now known (11/15). Transport of DHA and fatty acids into the brain across the BBB occurs only in the form of esters with lysophosphatidylcholines (LPCs) but not as free fatty acids in a sodium dependent manner. The phospho-zwitterionic headgroup of of LPC is essential for transport. MFSD2a ‘prefers’ long chain fatty acids (oleic, palmitic), failing to transport fatty acids with chain lengths under 14.

So MFSD2a inhibits transcytosis at the same time it promotes fatty acid transport into the brain. Major Facilitator Superfamily (MFS) proteins use the electrochemical potential of the cell to transport substrates. The best known MFSs are the glucose transporters (GLUT1 – 4).

So the blood brain barrier is due in part to the lipid transport activity of MFSD2a which gives BBB endothelium a different lipid composition (with lots of docosahexenoic acid) ) than others, inhibiting caveolar transport. Increased DHA levels are associated with membrane cholesterol depletion, as well as displacement of caveolin1 (the major protein involved in this form of transcytosis) from caveolae.

It is likely that MFSD2A acts as a lipid flippase, transporting phospholipids, including DHA containing species from the outer to the inner plasma membrane leaflet (where caveolin1 binds).

What is so hot about docosahexenoic acid — 22 carbons all in a row, a carboxyl group and 6 double bonds. We’re not talking fused ring systems, alkaloids, bizarre functional groups etc. etc.

Half the answer is that the double bonds are NOT randomly arranged. The 6 occur all in a row (but with methylene groups between them). This tells the chemist that they are not conjugated, hence the chain is probably not straight. Think how unlikely the arrangement is considering the way 6 double bonds and 9 methylenes COULD be arranged in a chain (2^15). Answer 5 ways depending on where the arrangement starts relative to the end of the chain.

The other half is that all the double bonds are cis, making it very unlikely that the 21 carbon chain can straighten out and cross the membrane. Lots of DHA means a very disordered membrane, which may be impossible to caveolin1 (and clathrin) to bind to.

So even though it’s years and years since I left organic chemistry, it permits the enjoying of the biochemical esthetics of the blood brain barrier.

The tight junctions between endothelial cells are primarily responsible for barrier function. These tight junctions are found only in the capillaries and postcapillary venules of the brain. Endothelial cells of the brain have few pinocytotic vesicles and fenestriae. [ Neuron vol. 71 p. 408 ’11 ] The brain vasculature has the thinnest endothelial cells, with the tightest junction and a higher degree of pericyte coverage coverage (‘up to’ 30%). [ Neuron vol. 78 pp. 214 – 232 ’13 ] The tight junctions are made from occludin, claudins and junctional adhesion molecules, and are closer to the lumen than the adherens junctions (which also link endothelial cells to each other) made by the cadherins (E, P and N). (ibid p. 219) TLR2/6 specific stimuli.