Tag Archives: allosteric effects

Force in physics is very different from the way we think of it

I’m very lucky (and honored) that a friend asked me to read and comment on the galleys of a his book. He’s trying to explain some very advanced physics to laypeople (e.g. me). So he starts with force fields, gravitational, magnetic etc. etc. The physicist’s idea of force is so far from the way we usually think of it. Exert enough force long enough and you get tired, but the gravitational force never does, despite moving planets stars and whole galaxies around.

Then there’s the idea that the force is there all the time whether or not it’s doing something a la Star Wars. Even worse is the fact that force can push things around despite going through empty space where there’s nothing to push on, action at a distance if you will.

You’ve in good company if the idea bothers you. It bothered Isaac Newton who basically invented action at a distance. Here he is in a letter to a friend.


“That gravity should be innate inherent & {essential} to matter so that one body may act upon another at a distance through a vacuum without the mediation of any thing else by & through which their action or force {may} be conveyed from one to another is to me so great an absurdity that I beleive no man who has in philosophical matters any competent faculty of thinking can ever fall into it. “

So physicists invented the ether which was physical, and allowed objects to push each other around by pushing on the ether between them. 

But action at a distance without one atom pushing on the next etc. etc. is exactly what an incredible paper found [ Proc. Natl. Acad. Sci. vol. 117 pp. 25445 – 25454 ’20 ].

Allostery is an abstract concept in protein chemistry, far removed from everyday life. Far removed except if you like to breathe, or have ever used a benzodiazepine (Valium, Librium, Halcion, Ativan, Klonopin, Xanax) for anything. Breathing? Really? Yes — Hemoglobin, the red in red blood cells is really 4 separate proteins bound to each other. Each of the four can bind one oxygen molecule. Binding of oxygen to one of the 4 proteins produces a subtle change in the structure of the other 3, making it easier for another oxygen to bind. This produces another subtle change in structure of the other making it easier for a third oxygen to bind. Etc. 

This is what allostery is, binding of molecule to one part of a protein causing changes in structure all over the protein. 

Neurologists are familiar with the benzodiazepines, using them to stop continuous seizure activity (status epilepticus), treat anxiety (Xanax), or seizures (Klonopin). They all work the same way, binding to a complex of 5 proteins called the GABA receptor, which when it binds Gamma Amino Butyric Acid (GABA) in one place causes negative ions to flow into the neuron, inhibiting it from firing. The benzodiazepines bind to a completely different site, making the receptor more likely to open when it binds GABA. 

The assumption about all allostery is that something binds in one place, pushing the atoms around, which push on other atoms which push on other atoms, until the desired effect is produced. This is the opposite of action at a distance, where an effect is produced without the necessity of physical contact.

The paper studied TetR, a protein containing 203 amino acids. If you’ve ever thought about it, almost all the antibiotics we have come from bacteria, which they use on other bacteria. Since we still have bacteria around, the survivors must have developed a way to resist antibiotics, and they’ve been doing this long before we appeared on the scene. 

TetR helps bacteria resist tetracycline, an antibiotic produced by bacteria. When tetracycline binds to TetR it causes other parts of the protein to change so it binds DNA causing the bacterium, among other things, to make a pump which moves tetracyline out of the cell. Notice that site where tetracycline binds on TetR is not the business end where TetR binds DNA, just as where the benzodiazepines bind the GABA receptor is not where the ion channel is. 

This post is long enough already without describing the cleverness which allowed the authors to do the following. They were able to make TetRs containing every possible mutation of all 203 positions. How many is that — 203 x 19 = 3838 different proteins. Why 19? Because we have 20 amino acids, so there are 19 possible distinct changes at each of the 203 positions in TetR.  

Some of the mutants didn’t bind to DNA, implying they were non-functional. The 3 dimensional structure of TetR is known, and they chose 5 of nonfunctional mutants. Interestingly these were distributed all over the protein. 

Then, for each of the 5 mutants they made another 3838 mutants, to see if a mutation in another position would make the mutant functional again. You can see what a tremendous amount of work this was. 

Here is where it gets really interesting. The restoring mutant (revertants if you want to get fancy) were all over the protein and up to 40 – 50 Angstroms away from the site of the dead mutation. Recall that 1 Angstrom is the size of a hydrogen atom, a turn of the alpha helix is 5.4 Angstroms and contains 3.5 amino acids per turn.The revertant mutants weren’t close to the part of the protein binding tetracycline or the part binding to DNA. 

Even worse the authors couldn’t find a contiguous path of atom pushing atom pushing atom, to explain why TetR was able to bind DNA again. So there you have it — allosteric action at a distance.

There is much more in the paper, but after all the work they did it’s time to let the authors speak for themselves. “Several important insights emerged from these results. First, TetR exhibits a high degree of allosteric plasticity evidenced by the ease of disrupting and restoring function through several mutational paths. This suggests the functional landscape of al- lostery is dense with fitness peaks, unlike binding or catalysis where fitness peaks are sparse. Second, allosterically coupled residues may not lie along the shortest path linking allosteric and active sites but can occur over long distances “

But there is still more to think about, particularly for drug development. Normally, in developing a drug for X, we have a particular site on a particular protein as a target, say the site on a neurotransmitter receptor where a neurotransmitter binds. But the work shows that sites far removed from the actual target might have the same effect

Action at a distance comes to chemistry

Allostery is an abstract concept in protein chemistry, far removed from everyday life. Far removed except if you like to breathe, or have ever used a benzodiazepine (Valium, Librium, Halcion, Ativan, Klonopin, Xanax) for anything. Breathing? Really? Yes — Hemoglobin, the red in red blood cells is really 4 separate proteins bound to each other. Each of the four can bind one oxygen molecule. Binding of oxygen to one of the 4 proteins produces a subtle change in the structure of the other 3, making it easier for another oxygen to bind. This produces another subtle change in structure of the other making it easier for a third oxygen to bind. Etc.

This is what allostery is, binding of molecule to one part of a protein causing changes in structure all over the protein.

Neurologists are familiar with the benzodiazepines, using them to stop continuous seizure activity (status epilepticus), treat anxiety (Xanax), or seizures (Klonopin). They all work the same way, binding to a complex of 5 proteins called the GABA receptor, which when it binds Gamma Amino Butyric Acid (GABA) in one place causes negative ions to flow into the neuron, inhibiting it from firing. The benzodiazepines bind to a completely different site, making the receptor more likely to open when it binds GABA.

The assumption about all allostery is that something binds in one place, pushing the atoms around, which push on other atoms which push on other atoms, until the desired effect is produced. This is the opposite of action at a distance, where an effect is produced without the necessity of physical contact.

Even though Newton invented a theory of gravity, which worked beautifully, he was disturbed by the fact that it acted through empty space. Here’s what he wrote in a letter to Bentley

“That gravity should be innate inherent & {essential} to matter so that one body may act upon another at a distance through a vacuum without the mediation of any thing else by & through which their action or force {may} be conveyed from one to another is to me so great an absurdity that I beleive no man who has in philosophical matters any competent faculty of thinking can ever fall into it. “

So physicists invented the ether which was physical, and allowed objects to push each other around by pushing on the ether between them.

But action at a distance without one atom pushing on the next etc. etc. is exactly what an incredible paper found [ Proc. Natl. Acad. Sci. vol. 117 pp. 25445 – 25454 ’20 ]. Here’s a link but it’s probably behind a paywall — https://www.pnas.org/content/pnas/117/41/25445.full.pdf

The paper studied TetR, a protein containing 203 amino acids. If you’ve ever thought about it, almost all the antibiotics we have come from bacteria, which they use on other bacteria. Since we still have bacteria around, the survivors must have developed a way to resist antibiotics, and they’ve been doing this long before we appeared on the scene.

TetR helps bacteria resist tetracycline, an antibiotic produced by bacteria. When tetracycline binds to TetR it causes other parts of the protein to change so it binds DNA causing the bacterium, among other things, to make a pump which moves tetracyline out of the cell. Notice that site where tetracycline binds on TetR is not the business end where TetR binds DNA, just as where the benzodiazepines bind the GABA receptor is not where the ion channel is.

This post is long enough already without describing the cleverness which allowed the authors to do the following. They were able to make TetRs containing every possible mutation of all 203 positions. How many is that — 203 x 19 = 3838 different proteins. Why 19? Because we have 20 amino acids, so there are 19 possible distinct changes at each of the 203 positions in TetR.

Some of the mutants didn’t bind to DNA, implying they were non-functional. The 3 dimensional structure of TetR is known, and they chose 5 of nonfunctional mutants. Interestingly these were distributed all over the protein.

Then, for each of the 5 mutants they made another 3838 mutants, to see if a mutation in another position would make the mutant functional again. You can see what a tremendous amount of work this was.

Here is where it gets really interesting. The restoring mutant (revertants if you want to get fancy) were all over the protein and up to 40 – 50 Angstroms away from the site of the dead mutation. Recall that 1 Angstrom is the size of a hydrogen atom, a turn of the alpha helix is 5.4 Angstroms and contains 3.5 amino acids per turn.The revertant mutants weren’t close to the part of the protein binding tetracycline or the part binding to DNA.

Even worse the authors couldn’t find a contiguous path of atom pushing atom pushing atom, to explain why TetR was able to bind DNA again. So there you have it — allosteric action at a distance.

There is much more in the paper, but after all the work they did it’s time to let the authors speak for themselves. “Several important insights emerged from these results. First, TetR exhibits a high degree of allosteric plasticity evidenced by the ease of disrupting and restoring function through several mutational paths. This suggests the functional landscape of al- lostery is dense with fitness peaks, unlike binding or catalysis where fitness peaks are sparse. Second, allosterically coupled residues may not lie along the shortest path linking allosteric and active sites but can occur over long distances “

But there is still more to think about, particularly for drug development. Normally, in developing a drug for X, we have a particular site on a particular protein as a target, say the site on a neurotransmitter receptor where a neurotransmitter binds. But the work shows that sites far removed from the actual target might have the same effect

The incredible chemical intelligence of an inanimate enzyme

God, I love organic chemistry.  Here’s why.  A recent Nature paper [ vol. 573 pp. 609 – 613 ’19 ] shows that an enzyme uses a Newton’s cradle to shuttle an allosteric effect some 25 Angstroms between two catalytic centers.  I’d never heard of Newton’s cradle, but you’ll recognize it from the picture when you follow this link — https://en.wikipedia.org/wiki/Newton%27s_cradle.  It is a device used to show that most classic example of classical (e.g. nonQuantum) physics — the conservation of momentum.

This despite Feynman’s statement in the Feynman Lectures on Physics Vol I. p 12 – 6 “Molecular forces have never been satisfactorily explained on a basis of classical physics” it takes quantum mechanics to understand them fully.”  True but chemists think of reactions in terms of classic physics all the time (harmonic oscillators as bond models, billiard ball collections hitting each other as in SN2).

To understand what is going on, you must understand the low barrier hydrogen bond. [ Proc. Natl. Acad. Sci. vol. 95 pp. 12799 – 12802 ’98 ] which is a type of hydrogen bond postulated to occur in enzymes, in which the potential barrier to shifting the hydrogen from one nucleophile (oxygen or nitrogen) in the bond to another is quite low (2 Kcal/mole). The nucleophiles are closer together than they usually are ( e. g. the interatomic distance between the two heteroatoms is smaller than the sum of their van-der-Waals radii (≤ 2.55 Å for O–O pairs; ≤ 2.65 Å for O–N pairs), and the hydrogen is essentially covalently bonded to both. This makes the hydrogen bonds quite strong (10 – 20 Kcal/mole). They think that such bonds stabilize intermediates in enzymatic reactions (such as that formed by the catalytic triad of a serine protease).

Regard the low barrier hydrogen bond as what glues the balls together in the Wiki picture.

The enzyme described in the paper (transketolase) uses a chain of low barrier hydrogen bonds as a communication channel between the two remote (25 Angstroms away) active sites in the obligate functional dimers.

The still pictures have to be seen to be believed.  I can’t wait for the movie.

Remember entropy?

Organic chemists have a far better intuitive feel for entropy than most chemists. Condensations such as the Diels Alder reaction decrease it, as does ring closure. However, when you get to small ligands binding proteins, everything seems to be about enthalpy. Although binding energy is always talked about, mentally it appears to be enthalpy (H) rather than Gibbs free energy (F).

A recent fascinating editorial and paper [ Proc. Natl. Acad. Sci. vol. 114 pp. 4278 – 4280, 4424 – 4429 ’17 ]shows how the evolution has used entropy to determine when a protein (CzrA) binds to DNA and when it doesn’t. As usual, advances in technology permit us to see this (e.g. multidimensional heteronuclear nuclear magnetic resonance). This allows us to determine the motion of side chains (methyl groups), backbones etc. etc. When CzrA binds to DNA methyl side chains on the protein move more, increasing entropy (deltaS) and as well all know the Gibbs free energy of reaction (deltaF) isn’t just enthalpy (deltaH) but deltaH – TdeltaS, so an increase in deltaS pushes deltaF lower meaning the reaction proceeds in that direction.

Binding of Zinc redistributes these side chain motion so that entropy decreases, and the protein moves off DNA. The authors call this dynamics driven allostery. The fascinating thing, is that this may happen without any conformational change of CzrA.

I’m not sure that molecular dynamics simulations are good enough to pick this up. Fortunately newer NMR techniques can measure it. Just another complication for the hapless drug chemist thinking about protein ligand interactions.