Category Archives: Neurology & Psychiatry

Measuring what the brain thinks it is perceiving rather than the stimulus itelf

It’s usually not hard to do neuropsychology experiments.  The hard part is being smart enough to think of a good one.  I found a recent one absolutely brilliant, as the authors were able to measure a signal which had to be coming from the conscious perception of motion in a particular direction [ Proc. Natl. Acad. Sci. vol. 116 pp. 5096 – 5101 ’19 ].

Throw any stimulus at a living human and you’ll get some sort of measurable electrical response or a measurable change in blood flow in a particular brain area (you can use functional MRI — fMRI to measure the latter).  But how do you know whether the response has anything to do with conscious perception.  You don’t.

Here’s where the cleverness of the authors comes in.  Probably most people reading this post know about Cartesian coordinates, but to not leave the nonMathematically inclined behind, I’ll use baseball to describe the experimental set up.

We talk about a baseball diamond, and that’s the way it looks to people sitting in the stands behind home plate.  But actually the 4 bases form a perfect square 90 feet on a side.

So turn the ‘diamond’ on its side so the path between home plate and first base is horizontal, as is the path between 2nd and third while the paths between first and second and between third base and home are vertical.

Now that you’re oriented, imagine this on a computer screen. What the authors did was to light up first and third for .15 seconds, turn things off for .067 seconds and then light up home plate and second base for .15 seconds.  So the dot pairs alternate about 4 times a second.

But what does this look like to a human being?  For about 10 seconds the dots actually appear to actually be moving horizontally, then they appear to be moving vertically.  Remember the dots themselves  aren’t moving at all, just blinking.

The brilliance of the setup is that with exactly the same stimulus (alternately lit pairs of dots) the same person will have two different perceptions of the way the dots are moving at different times.

What do you think they did next?

They put the same people in an MRI machine and then showed the dots actually moving across the screen horizontally and then vertically.  Different parts of the brain responded to vertical motion than responded to horizontal motion.  The response was increased blood flow to that area, which is what fMRI actually measures.

So then back to the original set up with alternate pairs of dots on and off about 4 times a second.  Then they asked people which way the dots appeared to be moving, and the area of the brain which lit up (showed increased flow) was the same one which lit up to actual motion in that direction.

So they were actually measuring conscious perception of motion, rather than some nonspecific response to the visual stimulus, because the stimulus didn’t change regardless of the way it was perceived.

One of things this means is that the brain is producing the same neural response when it perceives motion in one direction (even though none is present) that real motion produces.

I think this is just brilliant.  Bravo. Something for the philosophers among you to chew on.

Advertisements

Stock tip — update

The FDA approved esketamine (Spravato) last week (see copy of original post at the end).  I had recommended buying Johnson and Johnson if the FDA approved it.  I think it’s a good long term buy, but there is no rush for the following reason — Esketamine is not a drug you can get a prescription for and take on you own. Because of the psychiatric side effects it must be administered in a SPRAVATO REMS.

Risk Evaluation and Mitigation Strategy (REMS): SPRAVATO™ is available only through a restricted program called the SPRAVATO™ REMS because of the risks of serious adverse outcomes from sedation, dissociation, and abuse and misuse.

Important requirements of the SPRAVATO™ REMS include the following:

  • Healthcare settings must be certified in the program and ensure that SPRAVATO™ is:
    • Only dispensed in healthcare settings and administered to patients who are enrolled in the program.
    • Administered by patients under the direct observation of a healthcare provider and that patients are monitored by a healthcare provider for at least 2 hours after administration of SPRAVATO™.
  • Pharmacies must be certified in the REMS and must only dispense SPRAVATO™ to healthcare settings that are certified in the program.

So you can’t go to some shady practitioner who’ll say you have treatment resistant depression and get some (e.g. the pill pushers for opiates, ‘medical’ marihuana  etc. etc.)

So there aren’t going to be hordes of users right away, although the stuff I’ve read implies that there will be eventually.

If you have a subscription to Cell have a look at vol. 101 pp. 774 – 778 ’19 by the guys at Yale who did some of the original work.  If not content yourself with this.

They are refreshingly honest.

Was the Discovery of Ketamine’s Antidepressant Serendipitous?Of course. However, its discovery emerged from the testing of a novel mechanistic hypothesis related to the pathophysiology of depression.”

Basically the authors rejected the regnant theory of depression, namely that the cause was to be found in monoamine neurotransmission (e.g. by dopamine, norepinephrine, serotonin).  There was some evidence that the cerebral cortex was involved in depression (not just the monamine nuclei of the brainstem), so they looked at the two major neurotransmitters in brain (glutamic acid, and GABA), and chose to see what would happen if they blocked one of the many receptors for glutamic acid, the NMDA receptor.  They chose ketamine to do this.
Here’s what they found,  A single dose of ketamine produced antidepressant effects that began within hours peaked in 24 – 72 hours and dissipated within 2 weeks (if ketamine wasn’t repeated).  This was in 50 – 75% people with treatment resistant depression.  Remarkable 1/3 of treated patients went into remission.    There simply has never been anything like this, which is why I thought the drug would be a blockbuster.
There is a lot of speculation about just which effect of esketamine is crucial (increase in glutamic acid release with AMPAR stimulation, brain derived neurotrophic factor (BDNF) release, TrkB receptor stimulation, mTORC1 activation, local protein synthesis, restoration of functional connectivity in functional MRI.   In animals one sees a rapid proliferation of dendritic spines.
As promised – here’s a copy of the first post

Stock tip

The past performance of stock recommendations is no guarantee that it will continue — which is fortunate as my first tip (ONTX) was a disaster.  I knew it was a 10 to one shot but with a 100 to 1 payoff.  People play the lottery with worse odds.  Anyway ONTX had a rationale — for the gory details see — https://luysii.wordpress.com/2016/06/01/in-a-gambling-mood/

For those brave souls who followed this recommendation (including yours truly) here’s another.

On 4 March 2019 if the FDA approves esketamine for depression, buy Johnson and Johnson.  Why?  Some people think that no drug for depression works that well, as big Pharma in the past only was reporting positive studies.  The following is from Nature 21 February 2019.

Depression drug A form of the hallucinogenic party drug ketamine has cleared one of the final hurdles towards clinical use as an antidepressant. During a 12 February meeting at the US Food and Drug Administration (FDA) in Silver Spring, Maryland,an independent advisory panel voted 14 to 2 in favour of recommending a compound known as esketamine for use in treating depression.

What’s so hot about esketamine?  First its mechanism of action is completely different than the SSRIs, Monoamine oxidase inhibitors, or tricyclic antidepressants.

As you likely know, antidepressants usually take a few weeks to work at least in endogenous depression.  My clinical experience as a neurologist is slightly different, as I only used it for patients with disease I couldn’t help (end stage MS etc. etc.) where the only normal response to the situation was depression.  They often helped patients within a week.

I was staggered when I read the following paper back in the day.  But there was no followup essentially.

archives of general psychiatry volume 63 pp. 856 – 864 2006
The paper is not from St. Fraudulosa Hospital in Plok Tic, but from the Mood Disorders Research Unit at the National Institute of Mental Health.
Here are the basics from the paper

Patients  Eighteen subjects with DSM-IV major depression (treatment resistant).

Interventions  After a 2-week drug-free period, subjects were given an intravenous infusion of either ketamine hydrochloride (0.5 mg/kg) or placebo on 2 test days, a week apart. Subjects were rated at baseline and at 40, 80, 110, and 230 minutes and 1, 2, 3, and 7 days postinfusion.

Main Outcome Measure  Changes in scores on the primary efficacy measure, the 21-item Hamilton Depression Rating Scale.

Results  Subjects receiving ketamine showed significant improvement in depression compared with subjects receiving placebo within 110 minutes after injection, which remained significant throughout the following week. The effect size for the drug difference was very large (d = 1.46 [95% confidence interval, 0.91-2.01]) after 24 hours and moderate to large (d = 0.68 [95% confidence interval, 0.13-1.23]) after 1 week. Of the 17 subjects treated with ketamine, 71% met response and 29% met remission criteria the day following ketamine infusion. Thirty-five percent of subjects maintained response for at least 1 week.

Read this again: showed significant improvement in depression compared with subjects receiving placebo within 110 minutes after injection, which remained significant throughout the following week.

This is absolutely unheard of.  Yet the paper essentially disappeared.

What is esketamine?  It’s related to ketamine (a veterinary anesthetic and drug of abuse) in exactly the same way that a glove for your left hand is related to a right handed glove.  The two drugs are optical isomers of each other.

What’s so important about the mirror image?  It means that esketamine may well act rather differently than ketamine (the fact that ketamine worked is against this).  The classic example is thalidomide, one optical isomer of which causes horrible malformations (phocomelia) while the other is a sedative used in the treatment of multiple myeloma and leprosy.

If toxic side effects can be avoided, the market is enormous.  It is estimated that 25% of women and 10% of men will have a major depression at some point in their lives.

Initially, Esketamine ( SPRAVATOTM)  will likely be limited to treatment resistant depression.  But depressed people will find a way to get it and  their docs will find a way to give it.  Who wants to wait three weeks.  Just think of the extremely sketchy ‘medical indications’ for marihuana.

Does gamma-secretase have sex with its substrates?

This is a family blog (for the most part), so discretion is advised in reading further.   Billions have been spent trying to inhibit gamma-secretase.  Over 150 different mutations have been associated with familial Alzheimer’s disease.  The more we know about the way it works, the better.

A recent very impressive paper from China did just that [ Science vol. 363 pp. 690- 691, 701 eaaw0930 pp. 1 –> 8 ’19 ].

Gamma secretase is actually a combination of 4 proteins (presenilin1, nicastrin, APH1 (anterior pharynx defect) and PEN-2 (presenilin enhancer 2). It is embedded in membranes and has at least 19 transmembrane segments.  It cleaves a variety of proteins spanning membranes (e.g it hydrolyzes a peptide bond — which is just an amide).  The big deal is that cleavage occurs in the hydrophobic interior of the membrane rather than in the cytoplasm where there is plenty of water around.

Gamma secretase cleaves at least 20 different proteins this way, not just the amyloid precursor protein, one of whose cleavage products is the Abeta peptide making up a large component of the senile plaque of Alzheimer’s disease.

To get near gamma secretase, another enzyme must first cleave APP in another place so one extramembrane fragment is short.  Why so the rest of the protein can fit under a loop between two transmembrane helices of nicastrin.  This is elegance itself, so the gamma secretase doesn’t go around chopping up the myriad of extracellular proteins we have.

The 19 or so transmembrane helices of the 4 gamma secretase proteins form a horseshoe, into which migrates the transmembrane segment of the protein to be cleaved (once it can fit under the nicastrin loop).

So why is discretion advised before reading further?  Because the actual mechanism of cleavage involves intimate coupling of the proteins.    One of the transmembrane helices of presenilin1 unfolds to form two beta strands, and the transmembrane helix of the target protein unfolds to form one beta strand, the two strands pair up forming a beta sheet, and then the aspartic acid at the active site of gamma secretase cleaves the target (deflowers it if you will).  Is this sexual or what?

All in all another tribute to ingenuity (and possibly the prurience) of the blind watchmaker. What an elegant mechanism.

Have a look at the pictures in the Science article, but I think it is under a paywall.

Stock tip

The past performance of stock recommendations is no guarantee that it will continue — which is fortunate as my first tip (ONTX) was a disaster.  I knew it was a 10 to one shot but with a 100 to 1 payoff.  People play the lottery with worse odds.  Anyway ONTX had a rationale — for the gory details see — https://luysii.wordpress.com/2016/06/01/in-a-gambling-mood/

For those brave souls who followed this recommendation (including yours truly) here’s another.

On 4 March 2019 if the FDA approves esketamine for depression, buy Johnson and Johnson.  Why?  Some people think that no drug for depression works that well, as big Pharma in the past only was reporting positive studies.  The following is from Nature 21 February 2019.

Depression drug A form of the hallucinogenic party drug ketamine has cleared one of the final hurdles towards clinical use as an antidepressant. During a 12 February meeting at the US Food and Drug Administration (FDA) in Silver Spring, Maryland,an independent advisory panel voted 14 to 2 in favour of recommending a compound known as esketamine for use in treating depression.

What’s so hot about esketamine?  First its mechanism of action is completely different than the SSRIs, Monoamine oxidase inhibitors, or tricyclic antidepressants.

As you likely know, antidepressants usually take a few weeks to work at least in endogenous depression.  My clinical experience as a neurologist is slightly different, as I only used it for patients with disease I couldn’t help (end stage MS etc. etc.) where the only normal response to the situation was depression.  They often helped patients within a week.

I was staggered when I read the following paper back in the day.  But there was no followup essentially.

archives of general psychiatry volume 63 pp. 856 – 864 2006
The paper is not from St. Fraudulosa Hospital in Plok Tic, but from the Mood Disorders Research Unit at the National Institute of Mental Health.
Here are the basics from the paper

Patients  Eighteen subjects with DSM-IV major depression (treatment resistant).

Interventions  After a 2-week drug-free period, subjects were given an intravenous infusion of either ketamine hydrochloride (0.5 mg/kg) or placebo on 2 test days, a week apart. Subjects were rated at baseline and at 40, 80, 110, and 230 minutes and 1, 2, 3, and 7 days postinfusion.

Main Outcome Measure  Changes in scores on the primary efficacy measure, the 21-item Hamilton Depression Rating Scale.

Results  Subjects receiving ketamine showed significant improvement in depression compared with subjects receiving placebo within 110 minutes after injection, which remained significant throughout the following week. The effect size for the drug difference was very large (d = 1.46 [95% confidence interval, 0.91-2.01]) after 24 hours and moderate to large (d = 0.68 [95% confidence interval, 0.13-1.23]) after 1 week. Of the 17 subjects treated with ketamine, 71% met response and 29% met remission criteria the day following ketamine infusion. Thirty-five percent of subjects maintained response for at least 1 week.

Read this again: showed significant improvement in depression compared with subjects receiving placebo within 110 minutes after injection, which remained significant throughout the following week.

This is absolutely unheard of.  Yet the paper essentially disappeared.

What is esketamine?  It’s related to ketamine (a veterinary anesthetic and drug of abuse) in exactly the same way that a glove for your left hand is related to a right handed glove.  The two drugs are optical isomers of each other.

What’s so important about the mirror image?  It means that esketamine may well act rather differently than ketamine (the fact that ketamine worked is against this).  The classic example is thalidomide, one optical isomer of which causes horrible malformations (phocomelia) while the other is a sedative used in the treatment of multiple myeloma and leprosy.

If toxic side effects can be avoided, the market is enormous.  It is estimated that 25% of women and 10% of men will have a major depression at some point in their lives.

Initially, Esketamine ( SPRAVATOTM)  will likely be limited to treatment resistant depression.  But depressed people will find a way to get it and  their docs will find a way to give it.  Who wants to wait three weeks.  Just think of the extremely sketchy ‘medical indications’ for marihuana.

 

You might as well watch the Kardashians

You might as well watch the Kardashians.  Reading Shakespeare will not protect you against cognitive decline.  Although you can spindle and mutilate the intellectual cards you were dealt, you can’t play them.  That’s the rather depressing result of from  large (over 1,000 subjects) just in [ Proc. Natl. Acad. Sci. vol. 116 pp. 1832 – 1833, 2021 – 2026 ‘ 19 ].  You have doubtless heard that people who have higher educational attainment, who have had intellectually demanding occupations, who stay mentally and physically active have a lower incidence of Alzheimer’s disease.  This is true, but it’s because they were smarter to begin with.

Before describing the paper please do note that high intellectual attainment (due to high intellectual ability) is not absolutely  protective against Alzheimer’s.  Claude Shannon died of it (https://en.wikipedia.org/wiki/Claude_Shannon), as did a Fields medalist who entered college when I did, as did a classmate who wrote 43 papers testing new drugs.   It does lower the odds though.

There were intimations of this years ago [ J. Am. Med. Assoc. vol. 275 pp. 538 – 532 ’96 ] Catholic nuns ages 75 – 95 were studied. All had written an autobiographical essay at age 22 explaining why they wanted to enter the order.  14 died and some had Alzheimer’s.  The essays were read blind and scored for idea density, grammatical complexity etc. etc. Those with the lowest idea density etc. had Alzheimer’s, while those with the most intellectual complexity were free of Alzheimer neuropathology.  Of the 79 living nuns, the smart ones at age 22 remained smart for the most part at 75+ while the less gifted stayed the same.  This was a select and far from average group — all were college educated and were parochial school teachers for most of their lives.  So the group was controlled for education and occupation.

The PNAS study concerned military recruits (average age 20) entering the service between 1965 and 1975.  The people going in at age 20 were not Ivy League types, who had concocted all sorts of reasons they couldn’t serve.  The Ivy league types going in were JAG officers or Docs like myself, but we were educated and long past 20.  89% were white, 80% did not have combat exposure.

The group was part of the Vietnam Era Twin Study of Aging.  Subjects took the Armed Forces Qualification Test (AFQT) which measures cognitive ability.  Then some 1,237 were  retested at ages 51 – 59 and 1,009 were retested at an average age of 62.

Subjects filled out questionnaires concerning education, job complexity, physical and mental activity etc. etc.

So what was the best predictor of General Cognitive Ability (GCA) at 62?  It was not subsequent education, job complexity, intellectual engagement.  Each of them predicted under 1% of the variance of GCA at age 62.  The best predictor (and not that great) was GCA at 20, which accounted for over 10% of the variance.

Pretty depressing.  You can’t even play the hand you were dealt.

Somehow Princeton undergraduates have found this out and p. 15 of the 6 Feb ’19 issue of the Princeton Alumni Weekly describes the” Kardashian Lifestyle Klub, a registered student organization with about 150 members, meetings and University support“.

Proline rides again !

Proline is a kinky amino acid.  Kinky in the sense that it is only one of the twenty with a fixed configuration of its alpha carbon because of the ring (which may be why there is more of it in organisms living at high temperature) and kinky in the sense that when present in alpha helices it produces a kink.  The previous post shows how it is used to schlep the body weight’s worth of ATP we make each day out of our mitochondria — https://luysii.wordpress.com/2019/01/30/3939/.

Well here it is in one of the marijuana receptors (CB1).  Binding of delta9 THC in the 7 transmembrane alpha helix bundles of the G Protein Coupled Receptor (GPCR) causes an alteration in the kink allowing transmembrane helix 6 (TM6) to move outward toward the cytoplasm, creating a cavity on the intracellular side, where the G protein trimer can bind.

You can read much more about this in an exquisite paper [ Cell vol. 176 pp. 448 – 458 `19 ] describing the CB1 receptor bound to a synthetic ligand 20 times more potent that delta-9 tetrahydrocannabinol (delta9 THC).  It is a cryoEM study which used 177,000 projections to come up with a 3 Angstrom resolution structure of CB1 bound to MBDB-FUBINACA in complex with its G protein trimer.  They had to use a single chain variable fragment (scFv6) along with a positive allosteric modulator (PAM) called ZCZ-011 to stabilize the complex.

MBDB-FUBINACA is a story in itself.  It is presently the fentanyl of synthetic cannabinoids, which “has been linked to thousands of hospitalizations and numerous fatalities”  [ New England Journal of Medicine vol. 376 pp. 235 – 242 ’17 ].  I’m surprised I’ve never heard of it — have you? But then I’ve been retired from clinical practice for some time. Perhaps the mainstream press, pushing marihuana legalization as it has been, kept it quiet, or more likely there have been no further episodes of mass intoxication from the AMB-FUBINACA (aka the zombie drug) since 2017.

I’ve never knowingly used marihuana.  Frankly it scares me — for why please see — https://luysii.wordpress.com/2014/05/13/why-marihuana-scares-me/.

There are 4 molecular switches buried in GPCRs [ Current Med. Chem. vol. 19 pp. 1090 – 1109 ’12 ]

1. The ionic lock switch between the D/E R Y sequence at the cytoplasmic end of TM3 and E286 at the cytoplasmic end of TM6 (single letter amino acid code used) –http://130.88.97.239/bioactivity/aacodefrm.html

2. TM3 – TM7 lock switch.  In rhodopsin it is between the protonated Schiff base of lysine and a glutamic acid and it broken on light activation,.=

3. Toggle switch linked with the n P x x Y motif in TM7 (x stands for any amino acid) — much more about this later in the post.

4. Transmission switch — produced by agonist binding, the outward movement of TM6 to to ligand binding creating a hole fo the G protein to bind to the receptor on the cytoplasmic side.

So why did I call the Cell paper exquisite?  Because of the molecular detail it provides about just how MDMB FUBINACA activates CB1.  Here’s the structure of AB-FUBINACA — https://en.wikipedia.org/wiki/AB-FUBINACA.   Both look like drugs designed by a committee.  They both have a para-iodophenyl group, an amide, and a fused indole ring with an extra nitrogen (imidazole ring — I never could keep heterocyclic nomenclature straight).    MDMB has a methyl ester (in place of the amide) and a tertiary butyl group (in place of the isoPropyl group).

I don’t have time to look up how Pfizer came up with it.  The FUBINACAs do not resemble delta9 THC at all — https://en.wikipedia.org/wiki/Tetrahydrocannabinol.

The pictures in the paper show how the hydrophobic aromatic side chains of FIVE phenylalanines and 2 tryptophans create a nice oily space for delta9 THC and MBDB-FUBINACA to bind.

F200 (phenylAlanine 200) and W356 are the toggle twin switch which stabilize the inactive conformation of CB1.  The rotation of F200 to interact with the imidazole of FUBINACA, allows W356 to rotate outward, changing the kink produced the the proline #358  in TM6 allowing the helix to straighten and rotate outward toward the cytoplasm, creating a cavity for the G protein to bind to.

Definitely a tour de force for the blind watchman.

Peptide antibiotics as glue

Neurologists and neurosurgeons are well acquainted with the Gibbs Donnan effect even if they don’t know it by name.  Damage the neuronal or astrocytic cell membrane, and positive ions and water rush inside to neutralize the negative charge on the many large impermeant molecules residing inside (e.g. all RNA and all DNA because of the negatively charged phosphate backbone, and many negatively charged proteins).  Neurons and glia swell, and because the brain is enclosed in the rigid skull intracranial pressure rises.

All nonMicrobes have antiMicrobial peptides.  They are usually positively charged and are thought to work by attacking the negatively charged bacterial membrane.

The following paper [  Proc. Natl. Acad. Sci. vol. 116 p. 1017 – 1026 ’19 ] shows that LL37, a 37 amino acid antimicrobial peptide with 10 of its 37 amino acids positively charged (lysine or arginine) has another trick up its sleeve.  It enters the bacterium (E. coli in the paper) and gums things up, by binding to negatively charged bacterial DNA and proteins.   The authors were actually able to show that  motion of the DNA genome and one protein was cut in half.  The organism lived (surprising me) but not too well.

This effect should make you realize (me for the first time) the reason why so many of the big molecules in a cell  (DNA, RNA, protein) are negatively charged.  They don’t stick to each other because of electrostatic repulsion.  The cell uses this to determine which proteins can bind to DNA — there are enzymes which acetylate lysine on histone (histone acetylases) and remove it (histone deacetylases <HDACs > ).  Acetylating the amino group of lysine removes its positive charge (histones are positively charged precisely to enable them to bind DNA).

Now to finish with a chem 101 question.  The paper notes that 10^8 molecules of LL37 enter the organism resulting in a concentration of 90 milliMolar.  This is all you need to figure out the cell volume of E. Coli.  What is it.

Another way to study Alzheimer’s

Until I read the paper PLOS Genet. 14, e1007791 (2018)., I thought that this was a sure way to win Nobel prize.  It’s still pretty interesting.  The abstract in Science was misleading, implying that there was an APOE4 variant which was actually protective against Alzheimer’s disease. That would have been fantastic, as it would provide a clue as to just what the APOE4 allele was doing to increase the risk of Alzheimer’s disease.

A huge amount of work has been done on APOE4.   Googling produced 433,000 results (0.46 seconds).  Theories abound but we still don’t know.

The authors studied Blacks and Puerto Ricans and found that if you inherited the APOE4 allele from an African source (rather than a European source), your chance of developing Alzheimer’s disease was significantly less.  A total of 1,766 African American and 220 Puerto Rican individuals with late-onset Alzheimer disease, and 3,730 African American and 169 Puerto Rican cognitively healthy individuals (> 65 years) participated in the study.

The numbers: ApoE ε4 alleles on an African background conferred a lower risk than those with a European ancestral background, regardless of population (Puerto Rican: OR = 1.26 on African background, OR = 4.49 on European; African American: OR = 2.34 on African background, OR = 3.05 on European background).

Note that the ORs are still up for Alzheimer’s if you have APOE4, but the differences are significant and certainly real given the size of the study.

The authors think it’s the area around the APOE  gene, rather than the total genetic background (African vs. European etc. etc.)

It still might be worth doing the following.  Take skin fibroblasts from all four types of people (Puerto Ricans with APOE4 on African background, Puerto Ricans with APOE4 on European background, Blacks with APOE4 on African background, APOE4 on a European background).

Make induced pluripotent stem cells (iPSCs) from them (the technology to do so is quite advanced). Differentiate these iPSCs into neurons  and others into glia (technology quite available).  Study protein and mRNA expression, epigenetic modifications in neurons and glia from all 4 groups.  This might tell you just what APOE4 was doing in high and lower risk people, and possibly might give a clue as to how it was increasing Alzheimer’s risk.

My hopes were really up, because the abstract in Science implied that APOE4 in Blacks and Puerto Ricans was actually absolutely rather than relatively protective, which would have given us some serious clues to Alzheimer pathogenesis, when APOE4 protective cells were contrasted with APOE4 increased risk cells.

Oh well.

Lactose intolerance and the proteins of the synaptic cleft

What does lactose intolerance have to do with the zillions of proteins happily infesting the synaptic cleft?  Only someone whose mind was warped into very abstract thinking by rooming with philosophy majors in college would see a connection.

The synaptic cleft is of immense theoretical interest to neuroscientists, drug chemists and pharmacologists, and of great practical interest to people affected by neurologic and psychiatric disease either in themselves or someone they know (e.g. just about everyone).

Almost exactly a year ago I wrote a post about a great paper on the proteins of the synaptic cleft by Thomas Sudhof.  You may read the post after the *****

Well Dr. Sudhof is back with another huge review of just how synapses are formed [ Neuron vol. 100 pp. 276 – 293 ’18 ], which covers very similar ground.

It is clear that he’s depressed by the state of the field.  Here are a few quotes

“I believe that we may need to pay more attention to technical details than customary because the pressures on investigators have increased the tendency to publish preliminary results, especially results obtained with new methods whose limitations are not yet clear.”

Translation: a lot of the stuff coming out is junk.

“Given the abundance of papers reporting non-validated protein interactions that cannot possibly be all correct, it seems that confidence in a possible protein-protein interaction requires either isolation of a stable complex or biophysical measurements of interactions using recombinant purified proteins.”

Translation:  Oy vey !

“Pre- or postsynaptic specializations are surprisingly easy to induce by diverse signals. This was first shown in pioneering studies demonstrating that polylysine beads induce formation of presynaptic nerve terminals in cultured neurons and in brain in vivo.” Obviously this means that you have to be very careful when you claim that a given protein or two causes a synapse to form, which researchers have not been.”

Translation not needed.

Then on to the meat of the review.  “An impressive number of candidate synaptic Cell Adhesion Molecules (CAMs) has been described (9 classes are given each with multiple members). For some of these CAMs, compelling data demonstrate their presence in synapses and suggest a functional role in synapses. Others, however, are less well documented. If one looks at the results in total, the overall impression is puzzlement: how do so many CAMs contribute to shaping a synapse?”

Then from 281 – 286 he goes into the various CAMs, showing the extent and variety of proteins found in the synaptic cleft.  Which ones are necessary and what are they doing?  Can they all be important.  There must be some redundancy as knockout of some doesn’t do much.

Here is where lactose tolerance/intolerance comes in to offer succor to the harried investigator.

Bluntly, they must be doing something, and something important,  or they wouldn’t be there.

People with lactose intolerance have nothing wrong with the gene which breaks down lactose.  Babies have no problem with breast milk.  The enzyme (lactase)  produced from the gene is quite normal in all of us.  However 10,000 years ago and earlier, cattle were not domesticated, so there was no dietary reason for a human weaned from the breast to make the enzyme.  Something turned off lactase production — from my reading, it’s not clear what.   The control region (lactase enhancer) for the lactase gene is 14,000 nucleotides upstream from the gene itself.  After domestication of cattle, so that people could digest milk their entire lives a mutation arose changing cytosine to thymine in the enhancer.  The farthest back the mutation has been found is 6.500 years. 3 other mutations are known, which keep the lactase gene expressed past weaning.  They arose independently.  All 4 spread in the population, because back then our ancestors were in a semi-starved state most of the time, and carriers had better nutrition.

How does this offer succor to Dr. Sudhof?  Simply this, here is a mechanism to turn off production of an enzyme our ancestors didn’t need past weaning.  Don’t you think this would be the case for all the proteins found in and around the synapse.  They must be doing something or they wouldn’t be there.  I realize that this is teleology writ large, but evolutionary adaptations make you think this way.

*****

The bouillabaisse of the synaptic cleft

The synaptic cleft is so small ( under 400 Angstroms — 40 nanoMeters ) that it can’t be seen with the light microscope ( the smallest wavelength of visible light 3,900 Angstroms — 390 nanoMeters).  This led to a bruising battle between Cajal and Golgi a just over a century ago over whether the brain was actually made of cells.  Even though Golgi’s work led to the delineation of single neurons he thought the brain was a continuous network.  They both won the Nobel in 1906.

Semifast forward to the mid 60s when I was in medical school.  We finally had the electron microscope, so we could see synapses. They showed up as a small CLEAR spaces (e.g. electrons passed through it easily leaving it white) between neurons.  Neurotransmitters were being discovered at the same time and the synapse was to be the analogy to vacuum tubes, which could pass electricity in just one direction (yes, the transistor although invented hadn’t been used to make anything resembling a computer — the Intel 4004 wasn’t until the 70s).  Of course now we know that information flows back and forth across the synapse, with endocannabinoids (e. g. natural marihuana) being the major retrograde neurotransmitter.

Since there didn’t seem to be anything in the synaptic cleft, neurotransmitters were thought to freely diffuse across it to being to receptors on the other (postsynaptic) side e.g. a free fly zone.

Fast forward to the present to a marvelous (and grueling to read because of the complexity of the subject not the way it’s written) review of just what is in the synaptic cleft [ Cell vol. 171 pp. 745 – 769 ’17 ] http://www.cell.com/cell/fulltext/S0092-8674(17)31246-1 (It is likely behind a paywall).  There are over 120 references, and rather than being just a catalogue, the single author Thomas Sudhof extensively discusseswhich experimental work is to be believed (not that Sudhof  is saying the work is fraudulent, but that it can’t be used to extrapolate to the living human brain).  The review is a staggering piece of work for one individual.

The stuff in the synaptic cleft is so diverse, and so intimately involved with itself and the membranes on either side what what is needed for comprehension is not a chemist but a sociologist.  Probably most of the molecules to be discussed are present in such small numbers that the law of mass action doesn’t apply, nor do binding constants which rely on large numbers of ligands and receptors. Not only that, but the binding constants haven’t been been determined for many of the players.

Now for some anatomic detail and numbers.  It is remarkably hard to find just how far laterally the synaptic cleft extends.  Molecular Biology of the Cell ed. 5 p. 1149 has a fairly typical picture with a size marker and it looks to be about 2 microns (20,000 Angstroms, 2,000 nanoMeters) — that’s 314,159,265 square Angstroms (3.14 square microns).  So let’s assume each protein takes up a square 50 Angstroms on a side (2,500 square Angstroms).  That’s room for 125,600 proteins on each side assuming extremely dense packing.  However the density of acetyl choline receptors at the neuromuscular junction is 8,700/square micron, a packing also thought to be extremely dense which would give only 26,100 such proteins in a similarly distributed CNS synapse. So the numbers are at least in the right ball park (meaning they’re within an order of magnitude e.g. within a power of 10) of being correct.

What’s the point?

When you see how many different proteins and different varieties of the same protein reside in the cleft, the numbers for  each individual element is likely to be small, meaning that you can’t use statistical mechanics but must use sociology instead.

The review focuses on the neurExins (I capitalize the E  to help me remember that they are prEsynaptic).  Why?  Because they are the best studied of all the players.  What a piece of work they are.  Humans have 3 genes for them. One of the 3 contains 1,477 amino acids, spread over 1,112,187 basepairs (1.1 megaBases) along with 74 exons.  This means that just over 1/10 of a percent of the gene is actually coding for for the amino acids making it up.  I think it takes energy for RNA polymerase II to stitch the ribonucleotides into the 1.1 megabase pre-mRNA, but I couldn’t (quickly) find out how much per ribonucleotide.  It seems quite wasteful of energy, unless there is some other function to the process which we haven’t figured out yet.

Most of the molecule resides in the synaptic cleft.  There are 6 LNS domains with 3 interspersed EGFlike repeats, a cysteine loop domain, a transmembrane region and a cytoplasmic sequence of 55 amino acids. There are 6 sites for alternative splicing, and because there are two promoters for each of the 3 genes, there is a shorter form (beta neurexin) with less extracellular stuff than the long form (alpha-neurexin).  When all is said and done there are over 1,000 possible variants of the 3 genes.

Unlike olfactory neurons which only express one or two of the nearly 1,000 olfactory receptors, neurons express mutiple isoforms of each, increasing the complexity.

The LNS regions of the neurexins are like immunoglobulins and fill at 60 x 60 x 60 Angstrom box.  Since the synaptic cleft is at most 400 Angstroms long, the alpha -neurexins (if extended) reach all the way across.

Here the neurexins bind to the neuroligins which are always postsynaptic — sorry no mnemonic.  They are simpler in structure, but they are the product of 4 genes, and only about 40 isoforms (due to alternative splicing) are possible. Neuroligns 1, 3 and 4 are found at excitatory synapses, neuroligin 2 is found at inhibitory synapses.  The intracleft part of the neuroligins resembles an important enzyme (acetylcholinesterase) but which is catalytically inactive.  This is where the neurexins.

This is complex enough, but Sudhof notes that the neurexins are hubs interacting with multiple classes of post-synaptic molecules, in addition to the neuroligins — dystroglycan, GABA[A] receptors, calsystenins, latrophilins (of which there are 4).   There are at least 50 post-synaptic cell adhesion molecules — “Few are well understood, although many are described.”

The neurexins have 3 major sites where other things bind, and all sites may be occupied at once.  Just to give you a taste of he complexity involved (before I go on to  larger issues).

The second LNS domain (LNS2)is found only in the alpha-neurexins, and binds to neuroexophilin (of which there are 4) and dystroglycan .

The 6th LNS domain (LNS6) binds to neuroligins, LRRTMs, GABA[A] receptors, cerebellins and latrophilins (of which there are 4)_

The juxtamembrane sequence of the neurexins binds to CA10, CA11 and C1ql.

The cerebellins (of which there are 4) bind to all the neurexins (of a particular splice variety) and interestingly to some postsynaptic glutamic acid receptors.  So there is a direct chain across the synapse from neurexin to cerebellin to ion channel (GLuD1, GLuD2).

There is far more to the review. But here is something I didn’t see there.  People have talked about proton wires — sites on proteins that allow protons to jump from one site to another, and move much faster than they would if they had to bump into everything in solution.  Remember that molecules are moving quite rapidly — water is moving at 590 meters a second at room temperature. Since the synaptic cleft is 40 nanoMeters (40 x 10^-9 meters, it should take only 40 * 10^-9 meters/ 590 meters/second   60 trillionths of a second (60 picoSeconds) to cross, assuming the synapse is a free fly zone — but it isn’t as the review exhaustively shows.

It it possible that the various neurotransmitters at the synapse (glutamic acid, gamma amino butyric acid, etc) bind to the various proteins crossing the cleft to get their target in the postsynaptic membrane (e.g. neurotransmitter wires).  I didn’t see any mention of neurotransmitter binding to  the various proteins in the review.  This may actually be an original idea.

I’d like to put more numbers on many of these things, but they are devilishly hard to find.  Both the neuroligins and neurexins are said to have stalks pushing them out from the membrane, but I can’t find how many amino acids they contain.  It can’t find how much energy it takes to copy the 1.1 megabase neurexin gene in to mRNA (or even how much energy it takes to add one ribonucleotide to an existing mRNA chain).

Another point– proteins have a finite lifetime.  How are they replenished?  We know that there is some synaptic protein synthesis — does the cell body send packages of mRNAs to the synapse to be translated there.  There are at least 50 different proteins mentioned in the review, and don’t forget the thousands of possible isoforms, each of which requires a separate mRNA.

Old Chinese saying — the mountains are high and the emperor is far away. Protein synthesis at the synaptic cleft is probably local.  How what gets made and when is an entirely different problem.

A large part of the review concerns mutations in all these proteins associated with neurologic disease (particularly autism).  This whole area has a long and checkered history.  A high degree of cynicism is needed before believing that any of these mutations are causative.  As a neurologist dealing with epilepsy I saw the whole idea of ion channel mutations causing epilepsy crash and burn — here’s a link — https://luysii.wordpress.com/2011/07/17/we’ve-found-the-mutation-causing-your-disease-not-so-fast-says-this-paper/

Once again, hats off to Dr. Sudhof for what must have been a tremendous amount of work

Cellular senescence (again, again)

As well as being involved in normal cellular function, wound healing, embryology, and warding off cancer, cellular senescence may be involved in one form of neurodegeneration according to [ Nature vol. 562 pp. 503 – 504, 578 – 582 ’18 ]

Alzheimer’s disease is characterized by two findings visible with only a light microscope — the senile plaque which occurs outside neurons, and the neurofibrillary tangle (which occurs inside them).  The latter is due to accumulation of excessively phosphorylated tau protein.  A few mutations in the tau protein are known to cause neurodegeneration.  One such is the substitution of serine (S) for proline (P) at position #301 in tau (e. g. the P301S mutation).

Transgenic expression of the mutant tau in mice mimics the human illness.  Long before neurofibrillary tangles appear in neurons, glial cells (which don’t express much tau and never have neurofibrillary tangles) develop cellular senescence.  Neurons don’t show this.

p16^INK4a is a transcription factor which turns on cellular senescence, leading to expression of a bunch of proteins known as the Senescence Associated Secretory Phenotype (SASP).  It was elevated in glia.  The authors were able to prevent the neurodegeneration using another genetic tool, which produced cell death in cells expression p16^INK4a.  There was fewer neurofibrillary tangles in the animals.

The nature of the neural signal to glia causing senescence isn’t known at this point.  How glia signal back also isn’t known.

So are drugs killing senescence cells (senolytics) a possible treatment of neurodegeneration?  Stay tuned.

As readers of this blog well know, I’ve been flogging an idea of mine — that excessive cellular senescence with release of SASP products is behind the faatigue of chronic fatigue syndrome.   I’d love it if someone would measure p16^INK4a in these people — it’s so easy to do, and if the idea is correct would lead to a rational treatment for some with the disorder.

Neurodegeneration is a far larger fish to fry than CFS, and I hope people with it don’t get lost in the shuffle.

Here’s the idea again

Not a great way to end 2017

2017 ended with a rejection of the following letter to PNAS.

As a clinical neurologist with a long standing interest in muscular dystrophy(1), I was referred many patients who turned out to have chronic fatigue syndrome (CFS) . Medicine, then and now, has no effective treatment for CFS.

A paper (2) cited In an excellent review of cellular senescence (3) was able to correlate an intracellular marker of senescence (p16^INK4a) with the degree of fatigue experienced by patients undergoing chemotherapy for breast cancer. Chemotherapy induces cellular senescence, and the fatigue was thought to come from the various cytokines secreted by senescent cells (Senescence Associated Secretory Phenotype—SASP) It seems logical to me to test CFS patients for p16^INK4a (4).
I suggested this to the senior author; however, he was nominated as head of the National Cancer Institute just 9 days later. There the matter rested until the paper of Montoya et al. (5) appeared in July. I looked up the 74 individual elements of the SASP and found that 9 were among the 17 cytokines whose levels correlated with the degree of fatigue in CFS. However, this is not statistically significant as Montoya looked at 51 cytokines altogether.

In October, an article(6) on the possibility of killing senescent cells to prevent aging contained a statement that Judith Campisi’s group (which has done much of the work on SASP) had identified “hundreds of proteins involved in SASPs”. (These results have not yet been published.) It is certainly possible that many more of Montoya’s 17 cytokines are among them.

If this is the case, a rational therapy for CFS is immediately apparent; namely, the senolytics, a class of drugs which kills senescent cells. A few senolytics are currently available clinically and many more are under development as a way to attack the aging process (6).

If Montoya still has cells from the patients in the study, measuring p16^INK4a could prove or disprove the idea. However, any oncology service could do the test. If the idea proves correct, then there would be a way to treat the debilitating fatigue of both chemotherapy and CFS—not to mention the many more medical conditions in which severe fatigue is found.
Chemotherapy is a systemic process, producing senescent cells everywhere, which is why DeMaria (2) was able to use circulating blood cells to measure p16^INK4a. It is possible that the senescent cells producing SASP in CFS are confined to one tissue; in which case testing blood for p16^INK4a would fail. (That would be similar to pheochromocytoma cells, in which a few localized cells produce major systemic effects.)

Although senolytics might provide symptomatic treatment (something worthwhile having since medicine presently has nothing for the CFS patient), we’d still be in the dark about what initially caused the cells to become senescent. But this would be research well worth pursuing.

Anyone intrigued by the idea should feel free to go ahead and test it. I am a retired neurologist with no academic affiliation, lacking the means to test it.
References

1 Robinson, L (1979) Split genes and musclar dystrophy. Muscle Nerve 2: 458 – 464

2. He S, Sharpless N (2017) Senescence in Health and Disease. Cell 170: 1000 – 1011

3. Demaria M, et al. (2014) Cellular senescence promotes adverse effects of chemotherapy and cancer relapse. Cancer Discov. 7: 165 – 176

4. https://luysii.wordpress.com/2017/09/04/is-the-era-of-precision-medicine-for-chronic-fatigue-syndrome-at-hand/

5. Montoya JG, et al., (2017) Cytokine signature associated with disease severity in chronic fatigue syndrome patients, Proc Natl Acad Sci USA 114: E7150-E7158

6. Scudellari M, (2017) To stay young, kill zombie cells Nature 551: 448 – 450

Is a rational treatment for chronic fatigue syndrome at hand?

If an idea of mine is correct, it is possible that some patients with chronic fatigue syndrome (CFS) can be treated with specific medications based on the results of a few blood tests. This is precision medicine at its finest.  The data to test this idea has already been acquired, and nothing further needs to be done except to analyze it.

Athough the initial impetus for the idea happened only 3 months ago, there have been enough twists and turns that the best way explanation is by a timeline.

First some background:

As a neurologist I saw a lot of people who were chronically tired and fatigued, because neurologists deal with muscle weakness and diseases like myasthenia gravis which are associated with fatigue.  Once I ruled out neuromuscular disease as a cause, I had nothing to offer then (nor did medicine).  Some of these patients were undoubtedly neurotic, but there was little question in my mind that many others had something wrong that medicine just hadn’t figured out yet — not that it hasn’t been trying.

Infections of almost any sort are associated with fatigue, most probably caused by components of the inflammatory response.  Anyone who’s gone through mononucleosis knows this.    The long search for an infectious cause of chronic fatigue syndrome (CFS) has had its ups and downs — particularly downs — see https://luysii.wordpress.com/2011/03/25/evil-scientists-create-virus-causing-chronic-fatigue-syndrome-in-lab/

At worst many people with these symptoms are written off as crazy; at best, diagnosed as depressed  and given antidepressants.  The fact that many of those given antidepressants feel better is far from conclusive, since most patients with chronic illnesses are somewhat depressed.

The 1 June 2017 Cell had a long and interesting review of cellular senescence by Norman Sharpless [ vol. 169 pp. 1000 – 1011 ].  Here is some background about the entity.  If you are familiar with senescent cell biology skip to the paragraph marked **** below

Cells die in a variety of ways.  Some are killed (by infections, heat, toxins).  This is called necrosis. Others voluntarily commit suicide (this is called apoptosis).   Sometimes a cell under stress undergoes cellular senescence, a state in which it doesn’t die, but doesn’t reproduce either.  Such cells have a variety of biochemical characteristics — they are resistant to apoptosis, they express molecules which prevent them from proliferating and — most importantly — they secrete a variety of proinflammatory molecules collectively called the Senescence Associated Secretory Phenotype — SASP).

At first the very existence of the senescent state was questioned, but exist it does.  What is it good for?  Theories abound, one being that mutation is one cause of stress, and stopping mutated cells from proliferating prevents cancer. However, senescent cells are found during fetal life; and they are almost certainly important in wound healing.  They are known to accumulate the older you get and some think they cause aging.

Many stresses induce cellular senescence of which mutation is but one.  The one of interest to us is chemotherapy for cancer, something obviously good as a cancer cell turned senescent has stopped proliferating.   If you know anyone who has undergone chemotherapy, you know that fatigue is almost invariable.

****

One biochemical characteristic of the senescent cell is increased levels of a protein called p16^INK4a, which helps stop cellular proliferation.  While p16^INK4a can easily be measured in tissue biopsies, tissue biopsies are inherently invasive. Fortunately, p16^INK4a can also be measured in circulating blood cells.

What caught my eye in the Cell paper was a reference to a paper about cancer [ Cancer Discov. vol. 7 pp. 165 – 176 ’17 ] by M. Demaria, in which the levels of p16^INK4a correlated with the degree of fatigue after chemotherapy.  The more p16^INK4a in the blood cells the greater the fatigue.

I may have been the only reader of both papers with clinical experience wth chronic fatigue syndrome.  It is extremely difficult to objectively measure a subjective complaint such as fatigue.

As an example of the difficulty in correlating subjective complaints with objective findings, consider the nearly uniform complaint of difficulty thinking in depression, with how such patients actually perform on cognitive tests — e. g. there is  little if any correlation between complaints and actual performance — here’s a current reference — Scientific Reports 7, Article number: 3901(2017) —  doi:10.1038/s41598-017-04353.

If the results of the Cancer paper could be replicated, p16^INK4 would be the first objective measure of a patient’s individual sense of fatigue.

So I wrote both authors, suggesting that the p16^INK4a test be run on a collection of chronic fatigue syndrome (CFS) patients. Both authors replied quickly, but thought the problem would be acquiring patients.  Demaria said that Sharpless had a lab all set up to do the test.

Then fate (in the form of Donald Trump) supervened.  A mere 9 days after the Cell issue appeared, Sharpless was nominated to be the head of the National Cancer Institute by President Trump.  This meant Dr. Sharpless had far bigger fish to fry, and he would have to sever all connection with his lab because of conflict of interest considerations.

I also contacted a patient organization for chronic fatigue syndrome without much success.  Their science advisor never responded.

There matters stood until 22 August when a paper and an editorial about it came out [ Proc. Natl. Acad. Sci. vol. 114 pp. 8914 – 8916, E7150 – E7158 ’17 ].  The paper represented a tremendous amount of data (and work).  The blood levels of 51 cytokines (measures of inflammation) and adipokines (hormones released by fat) were measured in both 192 patients with CFS (which can only be defined by symptoms) and 293 healthy controls matched for age and gender.

In this paper, levels of 17 of the 51 cytokines correlated with severity of CFS. This is a striking similarity with the way the p16^INK4 levels correlated with the degree of fatigue after chemotherapy).  So I looked up the individual elements of the SASP (which can be found in Annu Rev Pathol. 21010; 5: 99–118.)  There are 74 of them. I wondered how many of the 51 cytokines measured in the PNAS paper were in the SASP.  This is trickier than it sounds as many cytokines have far more than one name.  The bottom line is that 20 SASPs are in the 51 cytokines measured in the paper.

If the fatigue of CFS is due to senescent cells and the SASPs  they release, then they should be over-represented in the 17 of the 51 cytokines correlating with symptom severity.  Well they are; 9 out of the 17 are SASP.  However although suggestive, this increase is not statistically significant (according to my consultants on Math Stack Exchange).

After wrote I him about the new work, Dr. Sharpless noted that CFS is almost certainly a heterogeneous condition. As a clinician with decades of experience, I’ve certainly did see some of the more larcenous members of our society who used any subjective diagnosis to be compensated, as well as a variety of individuals who just wanted to withdraw from society, for whatever reason. They are undoubtedly contaminating the sample in the paper. Dr. Sharpless thought the idea, while interesting, would be very difficult to test.

But it wouldn’t at all.  Not with the immense amount of data in the PNAS paper.

Here’s how. Take each of the 9 SASPs and see how their levels correlate with the other 16 (in each of the 192 CSF patients). If they correlate better with SASPs than with nonSASPs, than this would be evidence for senescent cells being the cause some cases of CFS. In particular, patients with a high level of any of the 9 SASPs should be studied for such correlations.  Doing so should weed out some of the heterogeneity of the 192 patients in the sample.

This is why the idea is testable and, even better, falsifiable, making it a scientific hypothesis (a la Karl Popper).  The data to refute it is in the possession of the authors of the paper.

Suppose the idea turns out to be correct and that some patients with CFS are in fact that way because, for whatever reason, they have a lot of senescent cells releasing SASPs.

This would mean that it would be time to start trials of senolyic drugs which destroy senescent cells on the group with elevated SASPs. Fortunately, a few senolytics are currently inc linical use.  This would be precision medicine at its finest.

Being able to alleviate the symptoms of CFS would be worthwhile in itself, but SASP levels could also be run on all sorts of conditions associated with fatigue, most notably infection. This might lead to symptomatic treatment at least.  Having gone through mono in med school, I would have loved to have been able to take something to keep me from falling asleep all the time.