Another research idea yours for the taking

How many of our 20,000 or so protein coding genes are essential for human existence?  There is a way to find out with no human experimentation whatsoever.  Even better, probably all the data is out there.  Looking at it the right way, finding and collating it is where you come in.  Be warned, it would be a lot of work.

Previous work [ Science vol. 350 pp. 1028 – 1029, 1092 – 1096, 1096 – 1101 ’15 ] came up with the idea that only 2,000 or so of our protein coding genes were truly essential.  The authors cleverly looked at a ‘near haploid’ chronic myelogenous leukemia cell line (KBM7).  Then because only one copy of a gene was present, they systematically knocked out gene after gene using CRISPR and looked at viability.

Similar work in yeast stated that only 1,000 of its 6,000 protein coding genes were essential.

But this is single cell stuff.  What about living breathing people?

Where is this data?  How should it be interrogated?  See if you can figure it out before reading further.

Probably more has been done since Science vol. 337 pp. 64 – 69 ’12 sequenced just the portion of our genome coding for proteins (the exomes) in 1,351 Europeans and 1,088 Africans.  Each individual had 35 premature termination codons, meaning that the gene likely didn’t produce a functional protein.  The average person also had 13,595 single nucleotide polymorphisms (from the standard genome), and probably some of them a less than functional protein.

Do you see how you could use this sort of thing to find out which genes are essential to our existence?

People sequence exomes because it’s easy and because the exome accounts for only 2% of our genome.

My guess is that probably a million exomes have been sequenced thus far, if not more.

So all you have to do is look at all million exome sequences and all 20,000 protein coding genes, and see —

In one of the Sherlock Holmes stories the following dialog appears

Gregory (Scotland Yard): “Is there any other point to which you would wish to draw my attention?”
Holmes: “To the curious incident of the dog in the night-time.”
Gregory: “The dog did nothing in the night-time.”
Holmes: “That was the curious incident.”

The curious incident would be a gene which never (or rarely) had a premature termination codon in the 1,000,000 or so exomes.  That would imply that it was essential for the existence of a living breathing human being.

Cute !  Well I’m a retired neurologist with no academic affiliation — take the idea and run with it.

Addendum 31 Mar ’19 – I received the following comment from Bryan

You may be interested in reading this pre-print on the topic:
Variation across 141,456 human exomes and genomes reveals the spectrum of loss-of-function intolerance across human protein-coding genes https://www.biorxiv.org/content/10.1101/531210v2

To which I replied
    • Bryan– thanks for the link. It was a good enough idea that the people at the Broad Institute had thought of it and carried it out. As people in grad school used to say when they got scooped on a paper — at least we were thinking well.

      It was hard to tell from reading the preprint whether there were genes with no pLoF (predicted loss of function) proving them essential. They do say that the 678 genes essential for human cell viability (characterized by CRISPR screening were ‘depleted’ for pLoF.

 

Advertisements
Post a comment or leave a trackback: Trackback URL.

Comments

  • Bryan  On March 29, 2019 at 5:27 pm

    You may be interested in reading this pre-print on the topic:
    Variation across 141,456 human exomes and genomes reveals the spectrum of loss-of-function intolerance across human protein-coding genes https://www.biorxiv.org/content/10.1101/531210v2

    • luysii  On March 31, 2019 at 2:55 pm

      Bryan– thanks for the link. It was a good enough idea that the people at the Broad Institute had thought of it and carried out. As people in grad school used to say when they got scooped on a paper — at least we were thinking well.

      It was hard to tell from reading the preprint whether there were genes with no pLoF (predicted loss of function) proving them essential. They do say that the 678 genes essential for human cell viability (characterized by CRISPR screening were ‘depleted’ for pLoF.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: