The neuron as motherboard

Back in the day when transistors were fairly large and the techniques for putting them together on silicon were primitive by today’s standards, each functionality was put on a separate component which was then placed on a substrate called the motherboard. Memory was one component, the central processing unit (CPU) another, each about the size of a small cellphone today. Later on as more and more transistors could be packed on a chip, functionality such as memory could be embedded in the CPU chip. We still have motherboards today as functionality undreamed of back then (graphic processors, disc drives) can be placed on them.

It’s time to look at individual neurons as motherboards rather than as CPUs which sum outputs and then fire. The old model was to have a neuron look like an oak tree, with each leaf functioning as an input device (dendritic spine). If enough of them were stimulated at once, a nerve impulse would occur at the trunk (the axon). To pursue the analogy a bit further, the axon has zillions of side branches (e.g,. the underground roots) which than contact other neurons. Probably the best example of this are the mangrove trees I saw in China, where the roots are above ground.

How would a contraption like this learn anything? If an impulse arrives at an axonal branch touching a leaf (dendritic spine) — e.g. a synapse, the spine doesn’t always respond. The more times impulses hit the leaf when it is responding to something else, the more likely the spine is to respond (this is called long term potentiation aka LTP).

We’ve always thought that different parts of the dendritic tree (leaves and branches) receive different sorts of information, and can remember (by LTP). Only recently have we been able to study different leaves and branches of the same neuron and record from them in a living intact animal. Well we can, and what the following rather technical description says, its that different areas of a single neuron are ‘trained’ for different tasks. So a single neuron is far more than a transistor or even a collection of switches. It’s an entire motherboard (full fledged computer to you).

Presently Intel can put billions of transistors on a chip. But we have billions of neurons, each of which has tends of thousands of leaves (synapses) impinging on it, along with memory of what happened at each leaf.

That’s a metaphorical way of describing the results of the following paper (given in full jargon mode).

[ Nature vol. 520 pp. 180 – 185 ’15 ] Different motor learning tasks induce dendritic calcium spikes on different apical tuft branches of individual layer V pyramidal neurons in mouse motor cortex. These branch specific calcium spikes cause long lasting potentiation of postsynaptic dendritic spines active at the time of spike generation.

Post a comment or leave a trackback: Trackback URL.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: