Framingham shows us just how there is more to biology than genetics

If you have two copies of a particular variant (rs993609) of the FTO gene (FaT mass and Obesity associated gene) you are likely to weigh 7 pounds more then if you have neither. Pretty exciting stuff for the basic scientist, given the problems obesity causes (or at least is associated with). The study involved 39,000 people [ Science vol. 316 pp. 889 – 894 ’07 ]. At the end of the post, I’ll have a lot of technical stuff about just what FTO is thought to do inside the cell, but that’s not why I’m posting this.

Framingham Massachusetts is a town about 30 miles west of Boston. Thanks to the cooperation of its citizenry, it has taught us huge swaths of human biology since it began nearly 70 years ago. Briefly, The Framingham Health Study (FHS) was initiated in 1948 when 5,209 people were enrolled in the original cohort; since then, the study has come to be composed of four separate but related populations. The Framingham Offspring Study began in 1971, consisting of 5,124 individuals who represented the children of the original cohort population and their spouses. Participants in the offspring study were given physical examinations and detailed questionnaires at regular intervals starting in 1972, with a total of eight waves completed through 2008. The Body Mass Index (BMI) was calculated from measured height and weight. The offspring cohort was born over a 40-y period, with participants ranging in age from their teens to their late 50s at the time of study onset in 1971. In addition to providing survey and examination data, a large fraction of participants (73.0%, 3,742 individuals) had their DNA genotyped using the 100KAffymetrix array (43). Genotypes at the rs9939609 allele of FTO were extracted using PLINK (44) from data contained in the Framingham SHARe database.

Given the same gene, its effects should be constant through time, other things being equal. The following work [ Proc. Natl. Acad. Sci. vol. 112 pp. 354 – 359 ’15 ] mined the Framingham study to see if when you were born mattered to how fat you became if you carried the fat variant. There were 8 waves of data collection data from ’71 to ’08. Those born before ’42 showed less penetrance of the FTO gene.

Figure 1 p.356 is particularly impressive. Everyone became heavier as they got older. This is because height declines with age raising BMI even in the presence of constant weight. As far as I know, the following explanation from another post ( original — “People lose height as they age, yet the BMI is quite sensitive to it (remember the denominator has height squared). The great thing about BMI is that it’s easily measured, and doesn’t rely on what people remember about their weight or their height. Well as a high school basketball player my height was 6′ 1”+, now (at age 75) its 6’0″. So even with constant weight my BMI goes up.

Well it’s time to do the calculation to see what a fairly common shrinkage from 73.5 inches to 72 would to to the BMI (at a constant weight). Surprisingly it is not trivial — (72/73.5) * (72/73.5) = .9596. So the divisor is 4% less meaning the BMI is 4% more, which is almost exactly what the low point on the curve does with each passing decade after 50 ! ! ! This might even be an original observation, and it would explain a lot.”

What is impressive about figure 1, is that those born before 1942 with two copies of the risk allele weren’t much heavier than those with one or no copies of the risk allele. This was true at all ages measured (remember these people were sequentially followed). Those born after 1942 carrying two copies of the high risk allele were 2 – 4 pounds heavier (again measured at all ages).

This is as good proof as one could hope for that environment affects gene expression, something we all assumed instinctively. There is no way one could repeat the experiment, except to start a new one in the future, which, as this shows, will occur in a different environment, which should make a difference. MDs gradually woke up to the fallacy of using historical rather than concurrent controls particularly in studies of therapies to prevent heart attack and stroke, as the rates of both dropped significantly in the past 50 years, and survival from individual heart attacks and strokes also improved.

So what does FTO actually do? Naturally anyone dealing with strokes wants to know as much as possible about one of the largest risk factors — obesity. What follows is a fairly undigested copy of my notes over the years on papers concerning FTO. I make no attempt to provide the relevant background, although most readers will have some. It’s interesting to see how our knowledge about FTO has grown over the years. Enjoy ! !

[ Science vol. 316 p. 185, 889 – 894 ’07 ] FTO was first found in type II diabetics by looking for single nucleotide polymorphisms distinguishing 1924 UK type II diabetics from 2938 UK controls (were southeast Asians included?). Subsequently, larger populations (3757 type IIs and 5346 controls) were independently studied and the findings replicated. [ Cell vol. 134 p. 714 ’08 ] — The association hasn’t held up in the Han Chinese.

The FTO gene is found on chromosome #16. 16% of white adults have two copies of the variant (46% have one copy). They are 1.67 times more likely to be obese. At this point (13 Apr ’07) no one knows what the gene does.

FTO is a gene of unknown function in an unknown pathway that was originally cloned as a result of a fused-toe mutant mouse, that results from a 1.6 megaBase deletion of mouse chromosome #8. The deletion removes some 6 genes.

[ Cell vol. 131 p. 827 ’07 ] A blurb about something to be published in Science. This work shows that FTO codes for a nucleic acid demethylase. It has the enzymatic activity of a 2 oxo-glutaric acid oxygenase. The enzyme removes methyl groups from 3 methyl thymine (in DNA) 3 methyl uracil (in RNA). The SNPs linking FTO to obesity are in introns in the gene. In mice, the mRNA for FTO is highly enriched in the hypothalamus. Levels of FTO mRNA drop by 60% in fasting mice.

[ Science vol. 318 pp. 1469 – 1472 ’07 ] The Science paper at last. The gene produce catalyzes the Fe++ and 2-oxoglutaric acid dependent demethylation of 3 methyl thymine (which may not be the relevant substrate) in single stranded DNA with production of succinic acid, formaldehyde, and CO2. FTO is found in the nucleus in transfected cells. The mRNA for FTO is most abundant in the brain particularly in hypothalamic nuclei governing energy balance. FTO is inhibited by Krebs cycle intermediates (isn’t 2 oxoglutarate a Krebs cycle intermediate? ) particularly fumaric acid.

[ Science vol. 334 pp. 569 – 571 ’11 ] FTO removes methyl groups from 3 Methylthymine, and 3 methylUridine in single stranded DNA and RNA (ssDNA, ssRNA). The present work shows FTO converts 6 methylamino Adenine to adenine in RNA. FTO associates with speckles containing RNA splicing factors and RNA polymerase II

[ Nature vol. 457 p. 1095 ’09 ] Mice lacking FTO were normal at birth, but at 6 weeks weighed 30 – 40% less than normal mice (or haploinsufficients). This was due to loss of white fat — which was nearly completely absent at 15 months. The mutants ate more (in proportion to their body weight) than normal. On a high fat diet, both groups gained less weight than normals. Mice lacking FTO use more energy while not moving much.

[ Nature vol. 458 pp. 894 – 898 ’09 ] Loss of FTO in mice leads to postnatal growth retardation and a significant reduction both in fat and in lean body mass. The leanness is due to increased energy expenditure and sympathetic cativation, despite decreased sspontaneous motor activity and relative hyperphagia.

[ Proc. Natl. Acad. Sci. vol. 107 pp. 8404 – 8409 ’10 ] Carriers of the fat allele of FTO have smaller brains (8% smaller in the frontal lobes, 12% smaller in the occipital lobes). The brain differences weren’t due to differences in cholesterol, hypertension or white matter hyperintensities. So FTO risk isn’t a surrogate for the metabolic changes of obesity. The study was done in 206 cognitively normal adults (average age 76). Every 1 unit increase in BMI was assocaited with 1 – 1.5% reduction in brain volume in a variety of brain regions.

The highest expression of FTO is in the cerebral cortex. Whether expression in the hypothalamus changes after food deprivation is controversial.

It is known that obesity (BMI > 30) is associated with smaller brains. In this group temporal lobe atrophy was found in people with higher BMI but not in people with risk allele of FTO.

There was no effect of BMI on brain size in noncarriers of the FTO allele. So FTO status may influence the effect of BMI on the brain.

[ Cell vol. 149 pp. 1635 – 1646 ’12 ] A study of just what 6methylamino adenine (m6A) is doing and where in the genome it is doing it. m6A is the physiologically relevant target of FTO. It is found in tRNA, rRNA and mRNA. It fact m6A is found in 7,676 different mRNAs. The modification is markedly increased throughout brain development. m6A sites are enriched near stop codons and in 3′ untranslated regions (3′ UTRs). Even more interestingly, there is an association between m6A and microRNA binding sites in the 3′ UTRs ! ! ! m6A is not enriched at splice junctions. 30% of genes are said to have microRNA binding sites, but 67% of the 3′ UTRs containing m6A have microRNA binding sites. However, the two can’t overlap in the 3′ UTR. Many features of m6A localization are the same in man and mouse.

[ Nature vol. 490 pp. 267 – 272 ’12 ] In some way the SNP rs7202116 in FTO is associated with phenotypic variability per se. No other locus causes BMI variability this way.

[ Proc. Natl. Acad. Sci. vol. 110 pp. 2557 – 2562 ’13 ] FTO is widely expressed, with highest levels in brain, particularly the hypothalamus. FTO expression in the hypothalamus is decreased after a 48 hour fast, and incraeasing after a 10 week exposure to a high fat diet.

Carriers of the obesity promoting allele are hyperphagic and show altered (how?) macronutrient preference. This work shows that cells lacking FTO show decreased activation of the mTORC1 pathway, decreased rates of mRNA translation, and increased autophagy — all of which helps explain the stunted growth seen in man homozygous for FTO mutations.

FTO is rapidly degraded when cells are deprived of amino acids (this decreases TORC1 activity, making it a part of the physiological response to starvation). How this reoates to the demethylase activity of FTO isn’t known (yet). The methylase action is crucial for its ability to sustain mTORC1 activity in the face of amino acid deprivation.

[ Nature vol. 507 pp. 309 – 310, 371 – 375 ’14 ] Amazingly, the association between obesity and FTO involves another gene (IRX3) which is 500 kiloBases away. This was determined by chromosome conformation capture (CCC). The promoter of IRX3 interacts physically interacts with the first intron of FTO — this was found human cell lines, and other organisms. Obesity li9nked SNPs are associated with IRX3 expression in these samples, but not with expression of FTO. Mice lacking a functional copy of IRX3 have 25 – 30% lower body weight than controls (primarily due to loss of fat mass and increase in BMR with browning of white fat.

There is another case — an enhancer in an intron of LMBR1 reglates the developmental gene SHH found over a megaBase away. Mutations in the enhancer can cause limb malformations due to altered SHH expression.

Post a comment or leave a trackback: Trackback URL.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: