The Silence is Deafening

A while back I wrote a post concerning a devastating paper which said that papers concerning the default mode of brain activity (as seen by functional magnetic resonance imaging { fMRI } ) had failed to make sure that the subjects were actually awake during the study (and most of them weren’t). The post is copied here after the ****

Here’s a paper from July ’14 [ Proc. Natl. Acad. Sci. vol. 111 pp. 10341 – 10346 ’14 ] Functional brain networks are typically mapped in a time averaged sense, based on the assumption that functional connections remain stationary in the resting brain. Typically resting state fMRI (default network == rsfMRI) is sampled at a resolution of 2 seconds or slower.

However the human connectome project (HCP) has high-quality rsfMRI data at subsecond resolution (using multiband accelerated echo planar imaging. This work used a sliding window approach mapping the evolution of functional brain networks over a continuous 15 minute interval at subsecond resolution in 10 people. I wrote the lead author 21 July ’14 to ask how he knew the subjects weren’t asleep during this time.

No response. The silence is deafening.

Another more recent paper [ Proc. Natl. Acad. Sci. vol. 111 pp. 14259–14264 ’14 ] had interesting things to say about brain maturation in attention deficit disorder/ hyperactivity — here’s the summary

It was proposed that individuals with attention-deficit/hyperactivity disorder (ADHD) exhibit delays in brain maturation. In the last decade, resting state functional imaging has enabled detailed investigation of neural connectivity patterns and has revealed that the human brain is functionally organized into large-scale connectivity networks. In this study, we demonstrate that the developing relationships between default mode network (DMN) and task positive networks (TPNs) exhibit significant and specific maturational lag in ADHD. Previous research has found that individuals with ADHD exhibit abnormalities in DMN–TPN relationships. Our results provide strong initial evidence that these alterations arise from delays in typical maturational patterns. Our results invite further investigation into the neurobiological mechanisms in ADHD that produce delays in development of large-scale networks.

I wrote the lead author a few days ago to ask how he knew the subjects weren’t asleep during this time.

No response. The silence is deafening.

***

Addendum 22 Nov ’14 — In a huge review of resting state MRI (Neuron vol. 84 pp. 681 – 696 ’14) The following appeared —
“The issue of inadvertent sleep has only recently gained prominence, and the field has not yet developed consensus on how to deal with this issue.” Well, silence is no longer an option.

If you Google “default mode network” you get 32 million hits in under a second. This is what the brain is doing when we’re sitting quietly not carrying out some task. If you don’t know how we measure it using functional mMRI skip to the #### and then come back. I’m not a fan of functional MRI (fMRI), the pictures it produces are beautiful and seductive, and unfortunately not terribly repeatable.

If [ Neuron vol. 82 pp. 695 – 705 ’14 ] is true than all the work on the default network should be repeated.

Why?

Because they found that less than half of 71 subjects studied were stably awake after 5 minutes in the scanner. E.g. they were actually asleep part of the time.

How can they say this?

They used Polysomnography — which simultaneously measures tons of things — eye movements, oxygen saturation, EEG, muscle tone, respiration pulse; the gold standard for sleep studies on the patients while in the MRI scanner.

You don’t have to be a neuroscientist to know that cognition is rather different in wake and sleep.

Pathetic.

####

There are now noninvasive methods to study brain activity in man. The most prominent one is called BOLD, and is based on the fact that blood flow increases way past what is needed with increased brain activity. This was actually noted by Wilder Penfield operating on the brain for epilepsy in the 30s. When the patient had a seizure on the operating table (they could keep things under control by partially paralyzing the patient with curare) the veins in the area producing the seizure turned red. Recall that oxygenated blood is red while the deoxygenated blood in veins is darker and somewhat blue. This implied that more blood was getting to the convulsing area than it could use.

BOLD depends on slight differences in the way oxygenated hemoglobin and deoxygenated hemoglobin interact with the magnetic field used in magnetic resonance imaging (MRI). The technique has had a rather checkered history, because very small differences must be measured, and there is lots of manipulation of the raw data (never seen in papers) to be done. 10 years ago functional magnetic imaging (fMRI) was called pseudocolor phrenology.

Some sort of task or sensory stimulus is given and the parts of the brain showing increased hemoglobin + oxygen are mapped out. As a neurologist, I was naturally interested in this work. Very quickly, I smelled a rat. The authors of all the papers always seemed to confirm their initial hunch about which areas of the brain were involved in whatever they were studying. Science just isn’t like that. Look at any issue of Nature or Science and see how many results were unexpected. Results were largely unreproducible. It got so bad that an article in Science 2 August ’02 p. 749 stated that neuroimaging (e.g. functional MRI) has a reputation for producing “pretty pictures” but not replicable data. It has been characterized as pseudocolor phrenology (or words to that effect).

What was going on? The data was never actually shown, just the authors’ manipulation of it. Acquiring the data is quite tricky — the slightest head movement alters the MRI pattern. Also the difference in NMR signal between hemoglobin without oxygen and hemoglobin with oxygen is small (only 1 – 2%). Since the technique involves subtracting two data sets for the same brain region, this doubles the error.

Advertisements
Post a comment or leave a trackback: Trackback URL.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: