Thrust and Parry about memory storage outside neurons.

First the post of 23 Feb ’14 discussing the paper (between *** and &&& in case you’ve read it already)

Then some of the rather severe criticism of the paper.

Then some of the reply to the criticisms

Then a few comments of my own, followed by yet another old post about the chemical insanity neuroscience gets into when they apply concepts like concentration to very small volumes.

Are memories stored outside of neurons?

This may turn out to be a banner year for neuroscience. Work discussed in the following older post is the first convincing explanation of why we need sleep that I’ve seen.

An article in Science (vol. 343 pp. 670 – 675 ’14) on some fairly obscure neurophysiology at the end throws out (almost as an afterthought) an interesting idea of just how chemically and where memories are stored in the brain. I find the idea plausible and extremely surprising.

You won’t find the background material to understand everything that follows in this blog. Hopefully you already know some of it. The subject is simply too vast, but plug away. Here a few, seriously flawed in my opinion, theories of how and where memory is stored in the brain of the past half century.

#1 Reverberating circuits. The early computers had memories made of something called delay lines ( where the same impulse would constantly ricochet around a circuit. The idea was used to explain memory as neuron #1 exciting neuron #2 which excited neuron . … which excited neuron #n which excited #1 again. Plausible in that the nerve impulse is basically electrical. Very implausible, because you can practically shut the whole brain down using general anesthesia without erasing memory.

#2 CaMKII — more plausible. There’s lots of it in brain (2% of all proteins in an area of the brain called the hippocampus — an area known to be important in memory). It’s an enzyme which can add phosphate groups to other proteins. To first start doing so calcium levels inside the neuron must rise. The enzyme is complicated, being comprised of 12 identical subunits. Interestingly, CaMKII can add phosphates to itself (phosphorylate itself) — 2 or 3 for each of the 12 subunits. Once a few phosphates have been added, the enzyme no longer needs calcium to phosphorylate itself, so it becomes essentially a molecular switch existing in two states. One problem is that there are other enzymes which remove the phosphate, and reset the switch (actually there must be). Also proteins are inevitably broken down and new ones made, so it’s hard to see the switch persisting for a lifetime (or even a day).

#3 Synaptic membrane proteins. This is where electrical nerve impulses begin. Synapses contain lots of different proteins in their membranes. They can be chemically modified to make the neuron more or less likely to fire to a given stimulus. Recent work has shown that their number and composition can be changed by experience. The problem is that after a while the synaptic membrane has begun to resemble Grand Central Station — lots of proteins coming and going, but always a number present. It’s hard (for me) to see how memory can be maintained for long periods with such flux continually occurring.

This brings us to the Science paper. We know that about 80% of the neurons in the brain are excitatory — in that when excitatory neuron #1 talks to neuron #2, neuron #2 is more likely to fire an impulse. 20% of the rest are inhibitory. Obviously both are important. While there are lots of other neurotransmitters and neuromodulators in the brains (with probably even more we don’t know about — who would have put carbon monoxide on the list 20 years ago), the major inhibitory neurotransmitter of our brains is something called GABA. At least in adult brains this is true, but in the developing brain it’s excitatory.

So the authors of the paper worked on why this should be. GABA opens channels in the brain to the chloride ion. When it flows into a neuron, the neuron is less likely to fire (in the adult). This work shows that this effect depends on the negative ions (proteins mostly) inside the cell and outside the cell (the extracellular matrix). It’s the balance of the two sets of ions on either side of the largely impermeable neuronal membrane that determines whether GABA is excitatory or inhibitory (chloride flows in either event), and just how excitatory or inhibitory it is. The response is graded.

For the chemists: the negative ions outside the neurons are sulfated proteoglycans. These are much more stable than the proteins inside the neuron or on its membranes. Even better, it has been shown that the concentration of chloride varies locally throughout the neuron. The big negative ions (e.g. proteins) inside the neuron move about but slowly, and their concentration varies from point to point.

Here’s what the authors say (in passing) “the variance in extracellular sulfated proteoglycans composes a potential locus of analog information storage” — translation — that’s where memories might be hiding. Fascinating stuff. A lot of work needs to be done on how fast the extracellular matrix in the brain turns over, and what are the local variations in the concentration of its components, and whether sulfate is added or removed from them and if so by what and how quickly.

We’ve concentrated so much on neurons, that we may have missed something big. In a similar vein, the function of sleep may be to wash neurons free of stuff built up during the day outside of them.


In the 5 September ’14 Science (vol. 345 p. 1130) 6 researchers from Finland, Case Western Reserve and U. California (Davis) basically say the the paper conflicts with fundamental thermodynamics so severely that “Given these theoretical objections to their interpretations, we choose not to comment here on the experimental results”.

In more detail “If Cl− were initially in equilibrium across a membrane, then the mere introduction of im- mobile negative charges (a passive element) at one side of the membrane would, according to their line of thinking, cause a permanent change in the local electrochemical potential of Cl−, there- by leading to a persistent driving force for Cl− fluxes with no input of energy.” This essentially accuses the authors of inventing a perpetual motion machine.

Then in a second letter, two more researchers weigh in (same page) — “The experimental procedures and results in this study are insufficient to support these conclusions. Contradictory results previously published by these authors and other laboratories are not referred to.”

The authors of the original paper don’t take this lying down. On the same page they discuss the notion of the Donnan equilibrium and say they were misinterpreted.

The paper, and the 3 letters all discuss the chloride concentration inside neurons which they call [Cl-]i. The problem with this sort of thinking (if you can call it that) is that it extrapolates the notion of concentration to very small volumes (such as a dendritic spine) where it isn’t meaningful. It goes on all the time in neuroscience. While between any two small rational numbers there is another, matter can be sliced only so thinly without getting down to the discrete atomic level. At this level concentration (which is basically a ratio between two very large numbers of molecules e.g. solute and solvent) simply doesn’t apply.

Here’s a post on the topic from a few months ago. It contains a link to another post showing that even Nobelists have chemical feet of clay.

More chemical insanity from neuroscience

The current issue of PNAS contains a paper (vol. 111 pp. 8961 – 8966, 17 June ’14) which uncritically quotes some work done back in the 80’s and flatly states that synaptic vesicles have a pH of 5.2 – 5.7. Such a value is meaningless. Here’s why.

A pH of 5 means that there are 10^-5 Moles of H+ per liter or 6 x 10^18 actual ions/liter.

Synaptic vesicles have an ‘average diameter’ of 40 nanoMeters (400 Angstroms to the chemist). Most of them are nearly spherical. So each has a volume of

4/3 * pi * (20 * 10^-9)^3 = 33,510 * 10^-27 = 3.4 * 10^-23 liters. 20 rather than 40 because volume involves the radius.

So each vesicle contains 6 * 10^18 * 3.4 * 10^-23 = 20 * 10^-5 = .0002 ions.

This is similar to the chemical blunders on concentration in the nano domain committed by a Nobelist. For details please see —

Didn’t these guys ever take Freshman Chemistry?

Addendum 24 June ’14

Didn’t I ever take it ? John wrote the following this AM

Please check the units in your volume calculation. With r = 10^-9 m, then V is in m^3, and m^3 is not equal to L. There’s 1000 L in a m^3.
Happy Anniversary by the way.

To which I responded

Ouch ! You’re correct of course. However even with the correction, the results come out to .2 free protons (or H30+) per vesicle, a result that still makes no chemical sense. There are many more protons in the vesicle, but they are buffered by the proteins and the transmitters contained within.

Post a comment or leave a trackback: Trackback URL.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: