Keep on truckin’ Dr. Schleyer

My undergraduate advisor (Paul Schleyer) has a new paper out in the 15 July ’14 PNAS pp. 10067 – 10072 at age 84+. Bravo ! He upends what we were always taught about electrophilic aromatic addition of halogens. The Arenium ion is out (at least in this example). Anyone with a smattering of physical organic chemistry can easily follow his mechanistic arguments for a different mechanism.

However, I wonder if any but the hardiest computational chemistry jock can understand the following (which is how he got his results) and decide if the conclusions follow.

Our Gaussian 09 (54) computations used the 6-311+G(2d,2p) basis set (55, 56) with the B3LYP hybrid functional (57⇓–59) and the Perdew–Burke–Ernzerhof (PBE) functional (60, 61) augmented with Grimme et al.’s (62) density functional theory with added Grimme’s D3 dispersion corrections (DFT-D3). Single-point energies of all optimized structures were obtained with the B2-PLYP [double-hybrid density functional of Grimme (63)] and applying the D3 dispersion corrections.

This may be similar to what happened with functional MRI in neuroscience, where you never saw the raw data, just the end product of the manipulations on the data (e.g. how the matrix was inverted and what manipulations of the inverted matrix was required to produce the pretty pictures shown). At least here, you have the tools used laid out explicitly.

For some very interesting work he did last year please see https://luysii.wordpress.com/2013/07/08/schleyer-is-still-pumping-out-papers-crystallization-of-a-nonclassical-norbornyl-cation/

Advertisements
Post a comment or leave a trackback: Trackback URL.

Comments

  • MJ  On July 19, 2014 at 12:33 pm

    My feeling is that if the computational methods are properly referenced (which it would seem is the case, given the citation numbers in the excerpt you posted), it is now on the reader to investigate further if things are still unclear. The real fun begins when the articles they reference wind up citing another batch of papers you suddenly realize you need to find. Heh.

    BTW, have you seen this webpage – https://openfmri.org/ ? It would seem that there are rumblings of a shift towards sharing the raw data in the fMRI community.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: