Further (physical) chemical elegance

If the chemical name phosphatidyl serine (PS) draws a blank, read the verbatim copy of a previous post under the *** to find out why it is so important to our existence. It is an ‘eat me’ signal when there is lots of it around, telling professional scavenger cells to engulf the cell showing lots of PS on its surface.

Life, as usual, is more complicated. There are a variety of proteins exposed on cell surfaces which bind to phosphoserine. Not only that, but exposing just a little PS on the surface of a cell can trigger a protective immune response. Immune cells binding to just a little PS on the surface of another cell proliferate rather than eat the cell expressing the PS. This brings us to Proc. Natl. Acad. Sci. vol. 111 pp 5526 – 5531 ’14 that explains how a given PS receptor (called TIM4) acts differently depending how much PS is present.

Some PS receptors such as Annexin V have essentially an all or none response to PS, if they bind at all, they trigger a response in the cell carrying them. Not so for TIM4 which only reacts if there is a lot of PS around, leaving cells which express less PS alone. This allows these cells to function in the protective immune response.

So how does TIM4 do this? See if you can think of a mechanism before reading the rest.

In addition to the PS binding pocket TIM4 has 4 peripheral basic residues in separate places. The basic residues are positively charged at physiologic pH and bind to the negatively charged phosphate group of phosphatidyl serene or to the carboxylate anion of phosphatidyl serine. The paper doesn’t explain how these basic residues don’t bind to the other phospholipids of the cell surface (such as phosphatidyl choline or sphingomyelin). It is conceivable that the basic side chains (arginine, lysine etc.) are so set up that they only bind to carboxylate anions and not phosphate anions (but this is a stretch). That would at least give them specificity for phosphatidyl serene as opposed the other phospholipids present in both leaflets of the cell membrane. In any even TIM4 will be triggered only if these groups also bind PS, leaving cells which show relatively little PS alone. Clever no?

For the cognoscenti, the Hill coefficient of TIM4 is 2 while that of Annexin V is 8 (describing more than explaining the all or none character of Annexin V binding).

Flippase. Eat me signals. Dragging their tails behind them. Have cellular biologists and structural biochemists gone over to the dark side? It’s all quite innocuous as the old nursery rhyme will show

Little Bo Peep has lost her sheep
and doesn’t know where to find them
Leave them alone, and they’ll come home
wagging their tails behind them.

First, some cellular biochemistry. The lipid bilayer encasing all our cells is made of two leaflets, inner and outer. The composition of the two is different (unlike the soap bubble). On the inside we find phosphatidylethanolamine (PE), phosphatidylserine (PS). The outer leaflet contains phosphatidylcholine (PC) and sphingomyelin (SM) and almost no PE or PS. This is clearly a low entropy situation compared to having all 4 randomly dispersed between the 2 leaflets.

What is the possible use of this (notice how teleology invariably creeps into cellular biology)? Chemistry is powerless to explain such things. Much as I love chemistry, such truths must be faced.

It takes energy to maintain this peculiar distribution. The enzyme moving PE and PS back inside the cell is the flippase. It requires energy in the form of ATP to operate. When a cell is dying ATP drops, and entropy takes its course moving PE and PS to the cell surface. Specialized cells (macrophages) exist to scoop up the dying or dead cells, without causing inflammation. They recognize PE and PS by a variety of receptors and munch up cells exposing them on the surface. So PE and PS are eat me signals which appear when there isn’t enough ATP around for flippase to use to haul PE and PS back inside. Clever no?

No for some juicy chemistry (assuming that you consider transport of a molecule across a lipid bilayer actual chemistry — no covalent bonds to the transferred molecule are formed or removed, although they are to the transporter). Well it certainly is physical chemistry isn’t it?

Here are the structures of PE, PS, PC, SM http://www.google.com/search?q=phosphatidylserine&client=safari&rls=en&tbm=isch&tbo=u&source=univ&sa=X&ei=bDRLU5yfHOPLsQSOnoG4BA&ved=0CPABEIke&biw=1540&bih=887#facrc=_&imgdii=_&imgrc=qrLByG2vmhWdwM%253A%3BwAtgsTPwCxeZXM%3Bhttp%253A%252F%252Fscience.csumb.edu%252F~hkibak%252F241_web%252Fimg%252Fpng%252FCommon_Phospholipids.png%3Bhttp%253A%252F%252Fscience.csumb.edu%252F~hkibak%252F241_web%252Fcoursework_pages%252F2012_02_2.html%3B1297%3B934.

There are a few things to notice. Like just about every lipid found in our membranes, they are amphipathic — they have a very lipid soluble part (look at the long hydrocarbon changes hanging below them) and a very water soluble part — the head groups containing the phosphate.

This brings us to [ Proc. Natl. Acad. Sci. vol. 111 pp. E1334 – E1343 ’14 ] Which describes ATP8A2 (aka the flippase). Interestingly, the protein, with at least 10 alpha helices spanning the membrane, and 3 cytoplasmic domains closely resembles the classic sodium pump beloved of neurophysioloogists everywhere, which pumps sodium ions out of neurons and pumps potassium ions inside, producing the equally beloved membrane potential of neurons.

Look at those structures again. While there are charges on PE, PS (on the phosphate group), these molecules are far larger than the sodium or the potassium ion (easily by a factor of 10). This has long been recognized and is called the ‘giant substrate problem’.

The paper solved the structure of ATP8A2 and used molecular dynamics stimulations to try to understand how it works. What they found is that transmembrane alpha helices 1, 2, 4 and 6 (out of 10) form a water filled cavity, which dissolves the negatively charged phosphate of the head group. What happens to those long hydrocarbon tails? The are left outside the helices in the lipid core of the membrane. It is the charged head groups that are dragged through by the flippase, with the tails wagging along behind them, just like little Bo Peep.

There’s a lot more great chemistry in the paper, particularly how Isoleucine #364 directs the sequential formation and annihilation of the water filled cavities between alpha helices 1, 2, 4 and 6, and how a particular aspartic acid is phosphorylated (by ATP, explaining why the enzyme no longer works in energetically dying cells) changing conformation of all 10 transmembrane helices, so that only one half of the channel is open at a time (either to the inside or the outside).

Go read and enjoy. It’s sad that people who don’t know organic chemistry are cut off from appreciating such elegance. There is more to esthetics than esthetics.

Post a comment or leave a trackback: Trackback URL.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: