Just when you thought you understood neurotransmission

Back in the day, the discovery of neurotransmission allowed us to think we understood how the brain worked. I remember explaining to medical students in the early 70s, that the one way flow of information from the presynaptic neuron to the post-synaptic one was just like the flow of current in a vacuum tube — yes a vacuum tube, assuming anyone reading knows what one is. Later I changed this to transistor when integrated circuits became available.

Also the Dale hypothesis as it was taught to me, was that a given neuron released the same neurotransmitter at all its endings. As it was taught back in the 60s this meant that just one transmitter was released by a given neuron.

Retrograde transmission was just a glimmer in the mind’s eye back then. We now know that the post-synaptic neuron releases compounds which affect the presynaptic neuron, the supposed controller of the postsynaptic neuron. Among them are carbon monoxide, and the endocannabinoids (e. g. what marihuana is trying to mimic).

In addition there are neurotransmitter receptors on the presynaptic neuron, which respond to what it and other neurons are releasing to control its activity. These are outside the synapse itself. These events occur more slowly than the millisecond responses in the synapse to the main excitatory neurotransmitter of the brain (glutamic acid) and the main inhibitory neurotransmitter (gamma amino butyric acid — aka GABA). Receptors on the presynaptic neuron for the transmitter it’s releasing are called autoreceptors, but the presynaptic terminal also contains receptors for other neurotransmitters.

Well at least, neurotransmitters aren’t released by the presynaptic neuron without an action potential which depolarizes the presynaptic terminal, or so we thought until [ Neuron vol. 82 pp. 63 – 70 ’14 ]. The report involves a structure near and dear to the neurologist the striatum (caudate and putamen — which is striated because the myelinated axons of the internal capsule go through its anterior end giving it a striated appearance).

It is the death of the dopamine containing neurons in the substantial nigra which cause Parkinsonism. They project some of their axons to the striatum. The striatum gets input elsewhere (from the cortex using glutamic acid) and from neurons intrinsic to itself (some of which use acetyl choline as their neurotransmitter — these are called cholinergic interneurons).

The paper makes the claim that the dopamine neurons projecting to the striatum also contain the inhibitory neurotransmitter GABA.

The paper also says that the cholinergic interneurons cause release of GABA by the dopamine neurons — they bind to a type of acetyl choline receptor called nicotinic (similar but not identical to the nicotinic receptors which allow our muscles to contract) in the presynaptic terminals of the dopamine neurons of the substantial nigra residing in the striatum. Isn’t medicine and neuroanatomy a festival of terms? It’s why you need a good memory to survive medical school.

These used optogenetics (something I don’t have time to explain — but see http://en.wikipedia.org/wiki/Optogenetics ) to selectively stimulate the 1 – 2% of striatal neurons which use acetyl choline as a neurotransmitter. What they found was that only GABA (and not dopamine) was released by the dopamine neurons in response to stimulating this small subset of neurons. Even more amazing, the GABA release occurred without an action potential depolarizing the presynaptic terminal.

This literally stands everything I thought I knew about neurotransmission on its ear. How widespread this phenomenon actually is, isn’t known at this point. Clearly, the work needs to be replicated — extreme claims require extreme evidence.

Unfortunately I’ve never provided much background on neurotransmission for the hapless chemists and medicinal chemists reading this (if there are any), but medicinal chemists must at least have a smattering of knowledge about this, since neurotransmission is involved in how large classes of CNS active drugs work — antidepressants, antipsychotics, anticonvulsants, migraine therapy. There is some background on this here — https://luysii.wordpress.com/2010/08/29/some-basic-pharmacology-for-the-college-student/

Advertisements
Post a comment or leave a trackback: Trackback URL.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: