Category Archives: Molecular Biology

Getting cytoplasm out of a single cell without killing it

It’s easy to see what cells are doing metabolically. Just take a million or so, grind them up and measure what you want. If this sounds crude to you, you’re right. We’ve learned a lot this way, but wouldn’t it be nice to take a single cell and get a sample of its cytoplasm (or it’s nucleus) without killing it. A technique described in the 29 July PNAS (vol. pp. 10966 – 10971 ’14) does just that. It’s hardly physiologic, as cells are grown on a layer of polycarbonate containing magnetically active carbon nanoTubes http://en.wikipedia.org/wiki/Carbon_nanotube covered in L-tyrosine polymers. The nanotubes are large enough to capture anything smaller than an organelle (1,000 Angstrom, 100 nanoMeter diameter, 15,000 Angstroms long). Turn on a magnetic underneath the polycarbonate, and they puncture the overlying cell and are filled with cytoplasm. Reverse the magnetic field and they come out, carrying the metabolites with them. Amazingly, there was no significant impact on cell viability or proliferation. Hardly physiologic but far better than what we’ve had.

It’s a long way from drug development, but wouldn’t it be nice to place your drug candidate inside a cell and watch what it’s doing?

A Troublesome Inheritance – IV — Chapter 3

Chapter III of “A Troublesome Inheritance” contains a lot of very solid molecular genetics, and a lot of unfounded speculation. I can see why the book has driven some otherwise rational people bonkers. Just because Wade knows what he’s talking about in one field, doesn’t imply he’s competent in another.

Several examples: p. 41 “”Nonethless, it is reasonable to assume that if traits like skin color have evolved in a population, the same may be true of its social behavior.” Consider yes, assume no.

p. 42 “The society of living chimps can thus with reasonable accuracy stand as a surrogate for the joint ancester” (of humans and chimps — thought to be about 7 megaYears ago) and hence describe the baseline from which human social behavior evolved.” I doubt this.

The chapter contains many just so stories about the evolution of chimp and human societies (post hoc propter hoc). Plausible, but not testable.

Then follows some very solid stuff about the effects of the hormone oxytocin (which causes lactation in nursing women) on human social interaction. Then some speculation on the ways natural selection could work on the oxytocin system to make people more or less trusting. He lists several potential mechanisms for this (1) changes in the amount of oxytocin made (2) increasing the number of protein receptors for oxytocin (3) making each receptor bind oxytocin more tightly. This shows that Wade has solid molecular biological (and biological) chops.

He quotes a Dutch psychologist on his results with oxytocin and sociality — unfortunately, there have been too many scandals involving Dutch psychologists and sociologists to believe what he says until its replicated (Google Diederik Stapel, Don Poldermans, Jens Forster, Markus Denzler if you don’t believe me). It’s sad that this probably honest individual is tarred with that brush but he is.

p. 59 — He notes that the idea that human behavior is solely the result of social conditions with no genetic influence is appealing to Marxists, who hoped to make humanity behave better by designing better social conditions. Certainly, much of the vitriol heaped on the book has come from the left. A communist uncle would always say ‘it’s the system’ to which my father would reply ‘people will corrupt any system’.

p. 61 — the effect of mutations of lactose tolerance on survival on society are noted — people herding cattle and drinking milk, survive better if their gene to digest lactose (the main sugar in milk) isn’t turned off after childhood. If your society doesn’t herd animals, there is no reason for anyone to digest milk after weaning from the breast. The mutations aren’t in the enzyme digesting lactose, but in the DNA that turns on expression of the gene for the enzyme (e.g. the promoter). Interestingly, 3 separate mutations in African herders have been found to do this, and different from the one that arose in the Funnel Beaker Culture of Scandinavia 6,000 yers ago. This is a classic example of natural selection producing the same phenotypic effect by separate mutations.

There is a much bigger biological fish to be fried here, which Wade doesn’t discuss. It takes energy to make any protein, and there is no reason to make a protein to help you digest milk if you aren’t nursing, and one very good reason not to — it wastes metabolic energy, something in short supply in humans as they lived until about 15,000 years ago. So humans evolved a way not to make the protein in adult life. The genetic change is in the DNA controlling protein production not the protein itself.

You may have heard it said that we are 98% Chimpanzee. This is true in the sense that our 20,000 or so proteins are that similar to the chimp. That’s far from the whole story. This is like saying Monticello and Independence Hall are just the same because they’re both made out of bricks. One could chemically identify Monticello bricks as coming from the Virginia piedmont, and Independence Hall bricks coming from the red clay of New Jersey, but the real difference between the buildings is the plan.

It’s not the proteins, but where and when and how much of them are made. The control for this (plan if you will) lies outside the genes for the proteins themselves, in the rest of the genome. The control elements have as much right to be called genes, as the parts of the genome coding for amino acids. Granted, it’s easier to study genes coding for proteins, because we’ve identified them and know so much about them. It’s like the drunk looking for his keys under the lamppost because that’s where the light is.

p. 62 — There follows some description of the changes of human society from hunter gathering, to agrarian, to the rise of city states, is chronicled. Whether adaptation to different social organizations produced genetic changes permitting social adaptation or were the cause of it isn’t clear. Wade says “changes in social behavior, has most probably been molded by evolution, through the underlying genetic changes have yet to be identified.” This assumes a lot, e.g. that genetic changes are involved. I’m far from sure, but the idea is not far fetched. Stating that genetic changes have never, and will never shape society, is without any scientific basis, and just as fanciful as many of Wade’s statements in this chapter. It’s an open question, which is really all Wade is saying.

In defense of Wade’s idea, think about animal breeding as Darwin did extensively. The Origin of Species (worth a read if you haven’t already read it) is full of interchanges with all sorts of breeders (pigeons, cattle). The best example we have presently are the breeds of dogs. They have very different personalities — and have been bred for them, sheep dogs mastifs etc. etc. Have a look at [ Science vol. 306 p. 2172 '04, Proc. Natl. Acad. Sci. vol. 101 pp. 18058 - 18063 '04 ] where the DNA of variety of dog breeds was studied to determine which changes determined the way they look. The length of a breed’s snout correlated directly with the number of repeats in a particular protein (Runx-2). The paper is a decade old and I’m sure that they’re starting to look at behavior.

More to the point about selection for behavioral characteristics, consider the domestication of the modern dog from the wolf. Contrast the dog with the chimp (which hasn’t been bred).

[ Science vol. 298 pp. 1634 - 1636 '02 ] Chimps are terrible at picking up human cues as to where food is hidden. Cues would be something as obvious as looking at the containing, pointing at the container or even touching it. Even those who eventually perform well, take dozens of trials or more to learn it. When tested in more difficult tests requiring them to show flexible use of social cues they don’t

This paper shows that puppies (raised with no contact with humans) do much better at reading humans than chimps. However wolf cubs do not do better than the chimps. Even more impressively, wolf cubs raised by humans don’t show the same skills. This implies that during the process of domestication, dogs have been selected for a set of social cognitive abilities that allow them to communicate with humans in unique ways. Dogs and wolves do not perform differently in a non-social memory task, ruling out the possibility that dogs outperform wolves in all human guided tasks.

All in all, a fascinating book with lots to think about, argue with, propose counterarguments, propose other arguments in support (as I’ve just done), etc. etc. Definitely a book for those who like to think, whether you agree with it all or not.

Old dog does new(ly discovered) tricks

One of the evolutionarily oldest enzyme classes is aaRS (for amino acyl tRNA synthetase). Every cell has them including bacteria. Life as we know it wouldn’t exist without them. Briefly they load tRNA with the appropriate amino acid. If this Greek to you, look at the first 3 articles in https://luysii.wordpress.com/category/molecular-biology-survival-guide/.

Amino acyl tRNA syntheses are enzymes of exquisite specificity, having to correctly match up 20 amino acids to some 61 different types of tRNAs. Mistakes in the selection of the correct amino acid occurs every 1/10,000 to 1/100,000, and in the selection of the correct tRNA every 1/1,000,000. The lower tRNA error rate is due to the fact that tRNAs are much larger than amino acids, and so more contacts between enzyme and tRNA are possible.

As the tree of life was ascended from bacteria over billions of years, 13 new protein domains which have no obvious association with aminoacylation have been added to AARS genes. More importantly, the additions have been maintained over the course of evolution (with no change in the primary function of the synthetase). Some of the new domains are appended to each of several synthetases, while others are specific to a single synthetase. The fact that they’ve been retained implies they are doing something that natural selection wants (teleology inevitably raises its ugly head with any serious discussion of molecular biology or cellular physiology — it’s impossible to avoid).

[ Science vol.345 pp 328 - 332 '14 ] looked at what mRNAs some 37 different AARS genes were transcribed into. Six different human tissues were studied this way. Amazingly, 79% of the 66 in-frame splice variants removed or disrupted the aaRS catalytic domain. . The AARS for histidine had 8 inframe splice variants all of which removed the catalytic domain. 60/70 variants losing the catalytic domain (they call these catalytic nulls) retained at least one of the 13 added domains in higher eukaryotes. Some of the transcripts were tissue specific (e.g. present in some of the 6 tissues but not all).

Recent work has shown roles for specific AARSs in a variety of pathways — blood vessel formation, inflammation, immune response, apoptosis, tumor formation, p53 signaling. The process of producing a completely different function for a molecule is called exaptation — to contrast it with adaptation.

Up to now, when a given protein was found to have enzymatic activity, the book on what that protein did was closed (with the exception of the small GTPases). End of story. Yet here we have cells spending the metabolic energy to make an enzymatically dead protein (aaRSs are big — the one for alanine has nearly 1,000 amino acids). Teleology screams — what is it used for? It must be used for something! This is exactly where chemistry is silent. It can explain the incredible selectivity and sensitivity of the enzyme but not what it is ‘for’. We have crossed the Cartesian dualism between flesh and spirit.

Could this sort of thing be the tip of the iceberg? We know that splice variants of many proteins are common. Could other enzymes whose function was essentially settled once substrates were found, be doing the same thing? We may have only 20,000 or so protein coding genes, but 40,000, 60,000, . . . or more protein products of them, each with a different biological function.

So aaRSs are very old molecular biological dogs, who’ve been doing new tricks all along. We just weren’t smart enough to see them (’till now).

Novels may have only 7 basic plots, but molecular biology continues to surprise and enthrall.

Here’s a drug target for schizophrenia and other psychiatric diseases

All agree that any drug getting schizophrenics back to normal would be a blockbuster. The more we study its genetics and biochemistry the harder the task becomes. Here’s one target — neuregulin1, one variant of which is strongly associated with schizophrenia (in Iceland).

Now that we know that neuregulin1 is a potential target, why should discovering a drug to treat schizophrenia be so hard? The gene stretches over 1.2 megaBases and the protein contains some 640 amino acids. Cells make some 30 different isoforms by alternative splicing of the gene. Since the gene is so large one would expect to find a lot of single nucleotide polymorphisms (SNPs) in the gene. Here’s some SNP background.

Our genome has 3.2 gigaBases of DNA. With sequencing being what it is, each position has a standard nucleotide at each position (one of A, T, G, or C). If 5% of the population have any one of the other 3 at this position you have a SNP. By 2004 some 7 MILLION SNPs had been found and mapped to the human genome.

Well it’s 10 years later, and a mere 23,094 SNPs have been found in the neuregulin gene, of which 40 have been associated with schizophrenia. Unfortunately most of them aren’t in regions of the gene which code for amino acids (which is to be expected as 640 * 3 = 1920 nucleotides are all you need for coding out of the 1,200,000 nucleotides making up the gene). These SNPs probably alter the amount of the protein expressed but as of now very little is known (even whether they increase or decrease neuregulin1 protein levels).

An excellent review of Neuregulin1 and schizophrenia is available [ Neuron vol. 83 pp. 27 - 49 '14 ] You’ll need a fairly substantial background in neuroanatomy, neuroembryology, molecular biology, neurophysiology to understand all of it. Included are some fascinating (but probably incomprehensible to the medicinal chemist) material on the different neurophyiologic abnormalities associated with different SNPs in the gene.

Here are a few of the high points (or depressing points for drug discovery) of the review. Neuregulin1 is a member of a 6 gene family, all fairly similar and most expressed in the brain. All of them have multiple splicing isoforms, so drug selectivity between them will be tricky. Also SNPs associated with increased risk of schizophrenia have been found in family members numbers 2, 3 and 6 as well, so neuregulin1 not be the actual target you want to hit.

It gets worse. The neuregulins bind to a family of receptors (the ERBBs) having 4 members. Tending to confirm the utility of the neuregulins as a drug target is the fact that SNPs in the ERBBs are also associated with schizophrenia. So which isoform of which neuregulin binding to which iso form of which ERBB is the real target? Knowledge isn’t always power.

A large part of the paper is concerned with the function of the neuregulins in embryonic development of the brain, leading the the rather depressing thought that the schizophrenic never had a change, having an abnormal brain to begin with. A drug to reverse such problems seems only a hope.

The neuregulin/EBBB system is only one of many genes which have been linked to schizophrenia. So it looks like a post of a 4 years ago on Schizophrenia is largely correct — http://luysii.wordpress.com/2010/04/25/tolstoy-was-right-about-hereditary-diseases-imagine-that/

Happy hunting. It’s a horrible disease and well worth the effort. We’re just beginning to find out how complex it really is. Hopefully we’ll luck out, as we did with the phenothiazines, the first useful antipsychotics.

“A Troublesome Inheritance” – I

One of the joys of a deep understanding of chemistry, is the appreciation of the ways in which life is constructed from the most transient of materials. Presumably the characteristics of living things that we can see (the phenotype) will someday be traceable back to the proteins, nucleic acids,and small metabolites (lipids, sugars, etc..) making us up.

For the time being we must content ourselves with understanding the code (our genes) and how it instructs the development of a trillion celled organism from a fertilized egg. This brings us to Wade’s book, which has been attacked as racist, by anthropologists, sociologists and other lower forms of animal life.

Their position is that races are a social, not a biological construct and that differences between societies are due to the way they are structured, not by differences in the relative frequency of the gene variants (alleles) in the populations making them up. Essentially they are saying that evolution and its mechanism descent with modification under natural selection, does not apply to humanity in the last 50,000 years when the first modern humans left Africa.

Wade disagrees. His book is very rich in biologic detail and one post about it discussing it all would try anyone’s attention span. So I’m going to go through it, page by page, commenting on the material within (the way I’ve done for some chemistry textbooks), breaking it up in digestible chunks.

As might be expected, there will be a lot of molecular biology involved. For some background see the posts in https://luysii.wordpress.com/category/molecular-biology-survival-guide/. Start with http://luysii.wordpress.com/2010/07/07/molecular-biology-survival-guide-for-chemists-i-dna-and-protein-coding-gene-structure/ and follow the links forward.

Wade won me over very quickly (on page 3), by his accurate and current citations to the current literature. He talks about how selection on a mitochondrial protein helped Tibetans to live at high altitude (while the same mutation those living at low altitudes leads to blindness). Some 25% Tibetans have the mutation while it is rare among those living at low altitudes.
Here’s my post of 10 June 2012 ago on the matter. That’s all for now

Have Tibetans illuminated a path to the dark matter (of the genome)?

I speak not of the Dalai Lama’s path to enlightenment (despite the title). Tall people tend to have tall kids. Eye color and hair color is also hereditary to some extent. Pitched battles have been fought over just how much of intelligence (assuming one can measure it) is heritable. Now that genome sequencing is approaching a price of $1,000/genome, people have started to look at variants in the genome to help them find the genetic contribution to various diseases, in the hopes of understanding andtreating them better.

Frankly, it’s been pretty much of a bust. Height is something which is 80% heritable, yet the 20 leading candidate variants picked up by genome wide association studies (GWAS) account for 3% of the variance [ Nature vol. 461 pp. 458 - 459 '09 ]. This has happened again and again particularly with diseases. A candidate gene (or region of the genome), say for schizophrenia, or autism, is described in one study, only to be shot down by the next. This is likely due to the fact that many different genetic defects can be associated with schizophrenia — there are a lot of ways the brain cannot work well. For details — see http://luysii.wordpress.com/2010/04/25/tolstoy-was-right-about-hereditary-diseases-imagine-that/. or see http://luysii.wordpress.com/2010/07/29/tolstoy-rides-again-autism-spectrum-disorder/.

Typically, even when an association of a disease with a genetic variant is found, the variant only increases the risk of the disorder by 2% or less. The bad thing is that when you lump them all of the variants you’ve discovered together (for something like height) and add up the risk, you never account for over 50% of the heredity. It isn’t for want of looking as by 2010 some 600 human GWAS studies had been published [ Neuron vol. 68 p. 182 '10 ]. Yet lots of the studies have shown various disease to have a degree of heritability (particularly schizophrenia). The fact that we’ve been unable to find the DNA variants causing the heritability was totally unexpected. Like the dark matter in galaxies, which we know is there by the way the stars spin around the galactic center, this missing heritability has been called the dark matter of the genome.

Which brings us to Proc. Natl. Acad. Sci. vol. 109 pp. 7391 – 7396 ’12. It concerns an awful disease causing blindness in kids called Leber’s hereditary optic neuropathy. The ’cause’ has been found. It is a change of 1 base from thymine to cytosine in the gene for a protein (NADH dehydrogenase subunit 1) causing a change at amino acid #30 from tyrosine to histidine. The mutation is found in mitochondrial DNA not nuclear DNA, making it easier to find (it occurs at position 3394 of the 16,569 nucleotide mitochondrial DNA).

Mitochondria in animal cells, and chloroplasts in plant cells, are remnants of bacteria which moved inside cells as we know them today (rest in peace Lynn Margulis).

Some 25% of Tibetans have the 3394 T–>C mutations, but they see just fine. It appears to be an adaptation to altitude, because the same mutation is found in nonTibetans on the Indian subcontinent living about 1500 meters (about as high as Denver). However, if you have the same genetic change living below this altitude you get Lebers.

This is a spectacular demonstration of the influence of environment on heredity. Granted that the altitude you live at is a fairly impressive environmental change, but it’s at least possible that more subtle changes (temperature, humidity, air conditions etc. etc.) might also influence disease susceptibility to the same genetic variant. This certainly is one possible explanation for the failure of GWAS to turn up much. The authors make no mention of this in their paper, so these ideas may actually be (drumroll please) original.

If such environmental influences on the phenotypic expression of genetic changes are common, it might be yet another explanation for why drug discovery is so hard. Consider CETP (Cholesterol Ester Transfer Protein) and the very expensive failure of drugs inhibiting it. Torcetrapib was associated with increased deaths in a trial of 15,000 people for 18 – 20 months. Perhaps those dying somehow lived in a different environment. Perhaps others were actually helped by the drug

Why marihuana scares me

There’s an editorial in the current Science concerning how very little we know about the effects of marihuana on the developing adolescent brain [ Science vol. 344 p. 557 '14 ]. We know all sorts of wonderful neuropharmacology and neurophysiology about delta-9 tetrahydrocannabinol (d9-THC) — http://en.wikipedia.org/wiki/Tetrahydrocannabinol The point of the authors (the current head of the Amnerican Psychiatric Association, and the first director of the National (US) Institute of Drug Abuse), is that there are no significant studies of what happens to adolescent humans (as opposed to rodents) taking the stuff.

Marihuana would the first mind-alteraing substance NOT to have serious side effects in a subpopulation of people using the drug — or just about any drug in medical use for that matter.

Any organic chemist looking at the structure of d9-THC (see the link) has to be impressed with what a lipid it is — 21 carbons, only 1 hydroxyl group, and an ether moiety. Everything else is hydrogen. Like most neuroactive drugs produced by plants, it is quite potent. A joint has only 9 milliGrams, and smoking undoubtedly destroys some of it. Consider alcohol, another lipid soluble drug. A 12 ounce beer with 3.2% alcohol content has 12 * 28.3 *.032 10.8 grams of alcohol — molecular mass 62 grams — so the dose is 11/62 moles. To get drunk you need more than one beer. Compare that to a dose of .009/300 moles of d9-THC.

As we’ve found out — d9-THC is so potent because it binds to receptors for it. Unlike ethanol which can be a product of intermediary metabolism, there aren’t enzymes specifically devoted to breaking down d9-THC. In contrast, fatty acid amide hydrolase (FAAH) is devoted to breaking down anandamide, one of the endogenous compounds d9-THC is mimicking.

What really concerns me about this class of drugs, is how long they must hang around. Teaching neuropharmacology in the 70s and 80s was great fun. Every year a new receptor for neurotransmitters seemed to be found. In some cases mind benders bound to them (e.g. LSD and a serotonin receptor). In other cases the endogenous transmitters being mimicked by a plant substance were found (the endogenous opiates and their receptors). Years passed, but the receptor for d9-thc wasn’t found. The reason it wasn’t is exactly why I’m scared of the drug.

How were the various receptors for mind benders found? You throw a radioactively labelled drug (say morphine) at a brain homogenate, and purify what it is binding to. That’s how the opiate receptors etc. etc. were found. Why did it take so long to find the cannabinoid receptors? Because they bind strongly to all the fats in the brain being so incredibly lipid soluble. So the vast majority of stuff bound wasn’t protein at all, but fat. The brain has the highest percentage of fat of any organ in the body — 60%, unless you considered dispersed fatty tissue an organ (which it actually is from an endocrine point of view).

This has to mean that the stuff hangs around for a long time, without any specific enzymes to clear it.

It’s obvious to all that cognitive capacity changes from childhood to adult life. All sorts of studies with large numbers of people have done serial MRIs children and adolescents as the develop and age. Here are a few references to get you started [ Neuron vol. 72 pp. 873 - 884, 11, Proc. Natl. Acad. Sci. vol. 107 pp. 16988 - 16993 '10, vol. 111 pp. 6774 -= 6779 '14 ]. If you don’t know the answer, think about the change thickness of the cerebral cortex from age 9 to 20. Surprisingly, it get thinner, not thicker. The effect happens later in the association areas thought to be important in higher cognitive function, than the primary motor or sensory areas. Paradoxical isn’t it? Based on animal work this is thought to be due pruning of synapses.

So throw a long-lasting retrograde neurotransmitter mimic like d9-THC at the dynamically changing adolescent brain and hope for the best. That’s what the cited editorialists are concerned about. We simply don’t know and we should.

Having been in Cambridge when Leary was just getting started in the early 60’s, I must say that the idea of tune in turn on and drop out never appealed to me. Most of the heavy marihuana users I’ve known (and treated for other things) were happy, but rather vague and frankly rather dull.

Unfortunately as a neurologist, I had to evaluate physician colleagues who got in trouble with drugs (mostly with alcohol). One very intelligent polydrug user MD, put it to me this way — “The problem is that you like reality, and I don’t”.

Further (physical) chemical elegance

If the chemical name phosphatidyl serine (PS) draws a blank, read the verbatim copy of a previous post under the *** to find out why it is so important to our existence. It is an ‘eat me’ signal when there is lots of it around, telling professional scavenger cells to engulf the cell showing lots of PS on its surface.

Life, as usual, is more complicated. There are a variety of proteins exposed on cell surfaces which bind to phosphoserine. Not only that, but exposing just a little PS on the surface of a cell can trigger a protective immune response. Immune cells binding to just a little PS on the surface of another cell proliferate rather than eat the cell expressing the PS. This brings us to Proc. Natl. Acad. Sci. vol. 111 pp 5526 – 5531 ’14 that explains how a given PS receptor (called TIM4) acts differently depending how much PS is present.

Some PS receptors such as Annexin V have essentially an all or none response to PS, if they bind at all, they trigger a response in the cell carrying them. Not so for TIM4 which only reacts if there is a lot of PS around, leaving cells which express less PS alone. This allows these cells to function in the protective immune response.

So how does TIM4 do this? See if you can think of a mechanism before reading the rest.

In addition to the PS binding pocket TIM4 has 4 peripheral basic residues in separate places. The basic residues are positively charged at physiologic pH and bind to the negatively charged phosphate group of phosphatidyl serene or to the carboxylate anion of phosphatidyl serine. The paper doesn’t explain how these basic residues don’t bind to the other phospholipids of the cell surface (such as phosphatidyl choline or sphingomyelin). It is conceivable that the basic side chains (arginine, lysine etc.) are so set up that they only bind to carboxylate anions and not phosphate anions (but this is a stretch). That would at least give them specificity for phosphatidyl serene as opposed the other phospholipids present in both leaflets of the cell membrane. In any even TIM4 will be triggered only if these groups also bind PS, leaving cells which show relatively little PS alone. Clever no?

For the cognoscenti, the Hill coefficient of TIM4 is 2 while that of Annexin V is 8 (describing more than explaining the all or none character of Annexin V binding).

****
Flippase. Eat me signals. Dragging their tails behind them. Have cellular biologists and structural biochemists gone over to the dark side? It’s all quite innocuous as the old nursery rhyme will show

Little Bo Peep has lost her sheep
and doesn’t know where to find them
Leave them alone, and they’ll come home
wagging their tails behind them.

First, some cellular biochemistry. The lipid bilayer encasing all our cells is made of two leaflets, inner and outer. The composition of the two is different (unlike the soap bubble). On the inside we find phosphatidylethanolamine (PE), phosphatidylserine (PS). The outer leaflet contains phosphatidylcholine (PC) and sphingomyelin (SM) and almost no PE or PS. This is clearly a low entropy situation compared to having all 4 randomly dispersed between the 2 leaflets.

What is the possible use of this (notice how teleology invariably creeps into cellular biology)? Chemistry is powerless to explain such things. Much as I love chemistry, such truths must be faced.

It takes energy to maintain this peculiar distribution. The enzyme moving PE and PS back inside the cell is the flippase. It requires energy in the form of ATP to operate. When a cell is dying ATP drops, and entropy takes its course moving PE and PS to the cell surface. Specialized cells (macrophages) exist to scoop up the dying or dead cells, without causing inflammation. They recognize PE and PS by a variety of receptors and munch up cells exposing them on the surface. So PE and PS are eat me signals which appear when there isn’t enough ATP around for flippase to use to haul PE and PS back inside. Clever no?

No for some juicy chemistry (assuming that you consider transport of a molecule across a lipid bilayer actual chemistry — no covalent bonds to the transferred molecule are formed or removed, although they are to the transporter). Well it certainly is physical chemistry isn’t it?

Here are the structures of PE, PS, PC, SM http://www.google.com/search?q=phosphatidylserine&client=safari&rls=en&tbm=isch&tbo=u&source=univ&sa=X&ei=bDRLU5yfHOPLsQSOnoG4BA&ved=0CPABEIke&biw=1540&bih=887#facrc=_&imgdii=_&imgrc=qrLByG2vmhWdwM%253A%3BwAtgsTPwCxeZXM%3Bhttp%253A%252F%252Fscience.csumb.edu%252F~hkibak%252F241_web%252Fimg%252Fpng%252FCommon_Phospholipids.png%3Bhttp%253A%252F%252Fscience.csumb.edu%252F~hkibak%252F241_web%252Fcoursework_pages%252F2012_02_2.html%3B1297%3B934.

There are a few things to notice. Like just about every lipid found in our membranes, they are amphipathic — they have a very lipid soluble part (look at the long hydrocarbon changes hanging below them) and a very water soluble part — the head groups containing the phosphate.

This brings us to [ Proc. Natl. Acad. Sci. vol. 111 pp. E1334 - E1343 '14 ] Which describes ATP8A2 (aka the flippase). Interestingly, the protein, with at least 10 alpha helices spanning the membrane, and 3 cytoplasmic domains closely resembles the classic sodium pump beloved of neurophysioloogists everywhere, which pumps sodium ions out of neurons and pumps potassium ions inside, producing the equally beloved membrane potential of neurons.

Look at those structures again. While there are charges on PE, PS (on the phosphate group), these molecules are far larger than the sodium or the potassium ion (easily by a factor of 10). This has long been recognized and is called the ‘giant substrate problem’.

The paper solved the structure of ATP8A2 and used molecular dynamics stimulations to try to understand how it works. What they found is that transmembrane alpha helices 1, 2, 4 and 6 (out of 10) form a water filled cavity, which dissolves the negatively charged phosphate of the head group. What happens to those long hydrocarbon tails? The are left outside the helices in the lipid core of the membrane. It is the charged head groups that are dragged through by the flippase, with the tails wagging along behind them, just like little Bo Peep.

There’s a lot more great chemistry in the paper, particularly how Isoleucine #364 directs the sequential formation and annihilation of the water filled cavities between alpha helices 1, 2, 4 and 6, and how a particular aspartic acid is phosphorylated (by ATP, explaining why the enzyme no longer works in energetically dying cells) changing conformation of all 10 transmembrane helices, so that only one half of the channel is open at a time (either to the inside or the outside).

Go read and enjoy. It’s sad that people who don’t know organic chemistry are cut off from appreciating such elegance. There is more to esthetics than esthetics.

Little Bo Peep meets cellular biology and biochemistry.

Flippase. Eat me signals. Dragging their tails behind them. Have cellular biologists and structural biochemists gone over to the dark side? It’s all quite innocuous as the old nursery rhyme will show

Little Bo Peep has lost her sheep
and doesn’t know where to find them
Leave them alone, and they’ll come home
wagging their tails behind them.

First, some cellular biochemistry. The lipid bilayer encasing all our cells is made of two leaflets, inner and outer. The composition of the two is different (unlike the soap bubble). On the inside we find phosphatidylethanolamine (PE), phosphatidylserine (PS). The outer leaflet contains phosphatidylcholine (PC) and sphingomyelin (SM) and almost no PE or PS. This is clearly a low entropy situation compared to having all 4 randomly dispersed between the 2 leaflets.

What is the possible use of this (notice how teleology invariably creeps into cellular biology)? Chemistry is powerless to explain such things. Much as I love chemistry, such truths must be faced.

It takes energy to maintain this peculiar distribution. The enzyme moving PE and PS back inside the cell is the flippase. It requires energy in the form of ATP to operate. When a cell is dying ATP drops, and entropy takes its course moving PE and PS to the cell surface. Specialized cells (macrophages) exist to scoop up the dying or dead cells, without causing inflammation. They recognize PE and PS by a variety of receptors and munch up cells exposing them on the surface. So PE and PS are eat me signals which appear when there isn’t enough ATP around for flippase to use to haul PE and PS back inside. Clever no?

No for some juicy chemistry (assuming that you consider transport of a molecule across a lipid bilayer actual chemistry — no covalent bonds to the transferred molecule are formed or removed, although they are to the transporter). Well it certainly is physical chemistry isn’t it?

Here are the structures of PE, PS, PC, SM http://www.google.com/search?q=phosphatidylserine&client=safari&rls=en&tbm=isch&tbo=u&source=univ&sa=X&ei=bDRLU5yfHOPLsQSOnoG4BA&ved=0CPABEIke&biw=1540&bih=887#facrc=_&imgdii=_&imgrc=qrLByG2vmhWdwM%253A%3BwAtgsTPwCxeZXM%3Bhttp%253A%252F%252Fscience.csumb.edu%252F~hkibak%252F241_web%252Fimg%252Fpng%252FCommon_Phospholipids.png%3Bhttp%253A%252F%252Fscience.csumb.edu%252F~hkibak%252F241_web%252Fcoursework_pages%252F2012_02_2.html%3B1297%3B934.

There are a few things to notice. Like just about every lipid found in our membranes, they are amphipathic — they have a very lipid soluble part (look at the long hydrocarbon changes hanging below them) and a very water soluble part — the head groups containing the phosphate.

This brings us to [ Proc. Natl. Acad. Sci. vol. 111 pp. E1334 - E1343 '14 ] Which describes ATP8A2 (aka the flippase). Interestingly, the protein, with at least 10 alpha helices spanning the membrane, and 3 cytoplasmic domains closely resembles the classic sodium pump beloved of neurophysioloogists everywhere, which pumps sodium ions out of neurons and pumps potassium ions inside, producing the equally beloved membrane potential of neurons.

Look at those structures again. While there are charges on PE, PS (on the phosphate group), these molecules are far larger than the sodium or the potassium ion (easily by a factor of 10). This has long been recognized and is called the ‘giant substrate problem’.

The paper solved the structure of ATP8A2 and used molecular dynamics stimulations to try to understand how it works. What they found is that transmembrane alpha helices 1, 2, 4 and 6 (out of 10) form a water filled cavity, which dissolves the negatively charged phosphate of the head group. What happens to those long hydrocarbon tails? The are left outside the helices in the lipid core of the membrane. It is the charged head groups that are dragged through by the flippase, with the tails wagging along behind them, just like little Bo Peep.

There’s a lot more great chemistry in the paper, particularly how Isoleucine #364 directs the sequential formation and annihilation of the water filled cavities between alpha helices 1, 2, 4 and 6, and how a particular aspartic acid is phosphorylated (by ATP, explaining why the enzyme no longer works in energetically dying cells) changing conformation of all 10 transmembrane helices, so that only one half of the channel is open at a time (either to the inside or the outside).

Go read and enjoy. It’s sad that people who don’t know organic chemistry are cut off from appreciating such elegance. There is more to esthetics than esthetics.

The death of the synonymous codon – IV

The coding capacity of our genome continues to amaze. The redundancy of the genetic code has been put to yet another use. Depending on how much you know, skip the following three links and read on. Otherwise all the background to understand the following is in them.

http://luysii.wordpress.com/2011/05/03/the-death-of-the-synonymous-codon/

http://luysii.wordpress.com/2011/05/09/the-death-of-the-synonymous-codon-ii/

http://luysii.wordpress.com/2014/01/05/the-death-of-the-synonymous-codon-iii/

There really was no way around it. If you want to code for 20 different amino acids with only four choices at each position, two positions (4^2) won’t do. You need three positions, which gives you 64 possibilities (61 after the three stop codons are taken into account) and the redundancy that comes with it. The previous links show how the redundant codons for some amino acids aren’t redundant at all but used to code for the speed of translation, or for exonic splicing enhancers and inhibitors. Different codons for the same amino acid can produce wildly different effects leaving the amino acid sequence of a given protein alone.

If anything will figure out a way to use synonymous codons for its own ends, it’s cancer. [ Cell vol. 156 pp. 1129 - 1131, 1324 - 1335 '14 ] analyzed protein coding genes in cancer. Not just a few cases, but the parts of the genome coding for the exons of a mere 3,851 cases of cancer. In addition they did whole genome sequencing in 400 cases of 19 different tumor types.

There are genes which suppress cancer (which cancer often knocks out — such as the retinoblastoma or the ubiquitous p53), and genes which when mutated promote it (oncogenes like ras). They found a 1.3 fold enrichment of synonymous mutations in oncogenes (which would tend to activate them) than in the tumor suppressors. The synonymous mutations accounted for 20 – 40 % of somatic mutations found in cancer exomes.

Unfortunately, synonymous mutations have been used to estimate the background mutation frequency for evolutionary analysis, on the theory that they are neutral (e.g. because they don’t change protein structure, they are assumed not to change how the gene for the protein functions). Wrong. Wrong. They can change how much, or where, or what exons of a protein are included in the final product.

Why drug discovery is so hard: Reason #25 — What if your drug target is really a pointer to the real target?

Any drug safely producing weight loss would be a big (or small) pharma blockbuster. Those finding it should get on the boat to Sweden. Finding a target to attack is the problem. Here’s one way to look. Take lots of fat people, lots of thin people and see what in their genomes differentiates them (assuming anything does). Actually what was done was to look at type II diabetics (non-insulin dependent) the vast majority overweight and controls. The first study involved the genomes of nearly 5,000 diabetics and controls. How did they interrogate the genomes? At the time of the work it was impossible to completely sequence this many genomes.

It’s time to speak of SNPs (single nucleotide polymorphisms). Our genome has 3.2 gigaBases of DNA. With sequencing being what it is, each position has a standard nucleotide at each position (one of A, T, G, or C). If 5% of the population have one of the other 3 at this position you have a SNP. Already 10 years ago, some 7 MILLION SNPs had been found and mapped to the human genome.

The first study found some SNPs associated with obesity in the diabetics. This tells where to look for the gene. A second study with nearly 9,000 diabetics and controls, replicated the first.

Then the monster study, with 39,000 people [ Science vol. 316 pp. 889 - 894 '07 ] found FTO (FaT mass and Obesity associated gene) on chromosome #16. The 16% of Caucasian adults with two copies of the variant SNP in FTO were 1.67 times more likely to be obese. An intense flurry of work showed that the gene coded for an oxidase, using iron and 2 oxo-glutaric acid (alphaKG for you old timers). The enzyme removes methyl groups from the amino group at position #6 of adenine and the 3 position of thymine. Before this time, no one really paid much attention to them. Subsequently we’ve found 6 methyl adenine in a mere 7,676 mRNAs. Just what it does when it’s there, and why the cell wants to remove it is currently being worked out.

Clearly FTO is a great target for an obesity drug. Of course they knocked the gene out in the mouse. The animals were normal at birth, but at 6 weeks weighed 30 – 40% less than normal mice. FTO as a drug target looked even better after this.

It was somewhat surprising that the SNP was in an intron in the gene. This meant that even in the obese the protein product of the FTO gene was the same as in the skinny. Presumably this could mean more FTO, less FTO or a different splice variant. If some of this molecular biology is above your pay grade, the background you need is in 5 posts starting with https://luysii.wordpress.com/2010/07/07/molecular-biology-survival-guide-for-chemists-i-dna-and-protein-coding-gene-structure/.

It was somewhat surprising that FTO levels were the same in people with and without the fat SNP. That left splice variants as a possibility.

The denouement came this week [ Nature vol. 507 pp. 309 - 310, 371 - 375 '14 ]. The intron containing the SNP in FTO produces obesity by controlling another gene called IRX3 which is a mere 500,000 nucleotides away. The intron of FTO binds to the promoter of IRX3 turning the gene on resulting in more IRX3. Mice lacking a functional copy of IRX3 have a 25 – 30% lower body mass. As any C programmer would say, FTO is the pointer not the data.

I don’t know if big or small pharma was at work finding inhibitors or enhancers of FTO function, but this paper should have brought them to a screeching halt. The FTO/IRX3 story just shows how many pitfalls there are to finding new drugs, and why the search has shown relatively little success recently. We are trying to alter the function of an incredibly complex system, whose workings we only dimly understand.

Follow

Get every new post delivered to your Inbox.

Join 66 other followers